Outline:
Introduction $\left\{\begin{array}{l}\text { Properties of } \mathrm{Cr} \\ S_{d H} \text { observations. }\end{array}\right.$
Semiclassical Boltzmann theons of magnetotransport $\left\{\begin{array}{l}\text { physical meaning of the solution (Pippard) } \\ \text { Application to circular \& open orbits (Ziman) }\end{array}\right.$ Solution for coupled orbits. $\left\{\begin{array}{l}\text { Introduce magnetic breakdown junction. } \\ \text { Geometric serves - Dyson }\end{array}\right.$
Application to the model $\left\{\begin{array}{l}\text { Qualitative behavior of } 4 \text { cases: }(P=0,1) \otimes(E \| \hat{x}, \hat{y}) \\ \text { Introduce quantum interference }\end{array}\right.$ π-phase shift
Conclusion - can be found in other incommensurate density wave systems.

Introduction
C_{r} properties:
bc

n.n. bond length: $a_{0}=\frac{\sqrt{3}}{2} \times 2.97 \simeq 0.866 \times 2.97 \cong 2.57 \AA$
$a \equiv 2.97 \AA$ - conventional u.c.
$1 B Z$ corresponding to the primitive cell

$$
\left.\left.\begin{array}{l}
\overrightarrow{a_{1}}=\frac{1}{2}(\hat{x}+\hat{y}+\hat{z}) a \\
\overrightarrow{a_{2}}=\frac{1}{2}(\hat{x}-\hat{y}+\hat{z}) a \\
\overrightarrow{a_{3}}=\frac{1}{2}(\hat{x}+\hat{y}-\hat{z}) a
\end{array}\right\} \Rightarrow\left\{\begin{array}{l}
v=\frac{a^{3}}{2} \\
\vec{b}_{1}=\frac{2 \pi}{a}(\hat{y}+\hat{z}) \\
\vec{b}_{2}=\frac{2 \pi}{a}(\hat{z}+\hat{x}) \\
\vec{b}_{3}+\vec{b}_{3}-\overrightarrow{b_{1}}=\frac{2 \pi}{a}(\hat{x}+\hat{y}) .
\end{array}\right\} \Rightarrow \begin{array}{l}
\text { periodicity sh reciprocal } \\
\text { space along } \hat{x} \text { is: }
\end{array}\right\} \begin{aligned}
& \text { sp: }
\end{aligned}
$$

other shorter periods in the $x y$ plane: $\vec{b}_{3}=\frac{2 \pi}{a}(\hat{x}+\hat{y})$

$$
\vec{b}_{2}-\vec{b}_{1}=\frac{2 \pi}{a}(\hat{x}-\hat{y}) .
$$

Incommensurate SDW below $T_{N}=311 \mathrm{~K}$

Fermi surface:

$$
\begin{aligned}
& \vec{Q}=\frac{2 \pi}{a}(1 \pm \delta) \hat{x} \\
& \text { period: } \frac{2 \pi}{\frac{2 \pi}{a} \delta}=\frac{a}{\delta} \simeq 20 a
\end{aligned}
$$

Exp wavelength: $\frac{a}{\delta}=6.0 \mathrm{~nm}$ at $T<10 \mathrm{~K} \Rightarrow \delta=\frac{2.97}{60} \simeq 0.0495$
speech direction:
($1-0.952=0.048$ in paper)

$$
\{\begin{array}{ll}
\hat{S} \| \hat{Q} & T<T_{S F}=123 K \\
\hat{S} \perp \hat{Q} & T>T_{S F} .
\end{array} \underbrace{}_{\frac{a}{\delta}\left(\frac{a}{2 \delta} \times 2=\lambda_{C D \omega} \times 2\right)}
$$

Experiment: $\quad(T=1.65 \mathrm{~K})$
$\square \underset{\longrightarrow \vec{Q}, \vec{I} \Rightarrow \rho_{x x}}{0_{z}^{y} x} \vec{H}\|\hat{z}, \vec{Q}\| \hat{x}$

$P(\mu \Omega \cdot(m)$

$\frac{\Delta P}{P} \uparrow W 0000000000 \sim ค \underbrace{-\Delta \rho_{y y} / \rho_{y y}} \Delta \rho_{x x} / \rho_{x x} \quad$ but $S d H$ oscillation should not depend on current direction.

Naive picture: (2D $L L$).
$\frac{1}{2 m}(-i \hbar \nabla+|e| \vec{A})^{2} \psi=\varepsilon \psi \Rightarrow \varepsilon=\hbar \omega_{c}\left(n+\frac{1}{2}\right) \quad \omega_{c}=\frac{e B}{m^{*}}$
number of electrons in each $L L: N_{B}=\frac{A}{2 \pi l_{B}^{2}}=\frac{A}{2 \pi} \frac{e B}{\hbar}$
\therefore If the system has N_{0} electrons, there will be a gap at the Fermi energy whenever $N_{0}=n \times N_{B}=n \frac{A}{2 \pi} \frac{e B}{\hbar} \Rightarrow B_{n}=\frac{1}{n} \frac{2 \pi \hbar N_{0}}{e A}$
$P_{x y} \uparrow \quad v=1$ or $\Delta B_{n}=\frac{1}{n(n-1)} \frac{2 \pi \hbar N_{0}}{e A}$
query y whenever

$\therefore P_{x x}$ should oscillate with $\frac{1}{B}$ with the period $\Delta\left(\frac{1}{B}\right)=\frac{e A}{2 \pi \hbar \bar{N}_{0}}=\frac{e}{h} \bar{n}_{e}$
This is when there is a gap at the FS \Rightarrow all longitudinal $\sigma_{i i}$ (in 3D)
should have a minimum, all $P_{i i}$ should have a maximum.
\Rightarrow why can $P_{x x}\left(\frac{1}{H}\right)$ and $P_{u s y}\left(\frac{1}{H}\right)$ have opposite phases ??

Semiclassical Boltzmann theory of magnetotransport.

Two ingredients: (1) equations of motion, (2) Boltzmann equation.
(1): $\left\{\begin{array}{lc}\dot{\vec{r}}=\frac{1}{\hbar} \frac{\partial \varepsilon}{\partial \vec{k}} & (\dot{\vec{r}} \text { can have more corrections if TRS is broken: } \\ \dot{\vec{k}}=-\frac{e}{\hbar}(\vec{E}+\dot{\vec{r}} \times \vec{B}) & \frac{1}{n} \frac{\partial \text { Ezeeman }}{\vec{\nabla}} \times \overrightarrow{ } \quad \rightarrow\end{array}\right.$
(2) $\frac{\partial f}{\partial t}+\frac{\partial f}{\partial \vec{r}} \cdot \dot{\vec{r}}+\frac{\partial f}{\partial \vec{k}} \cdot \dot{\vec{k}}=-\frac{f-f_{0}}{\tau}$

For C_{r} SDW - TR + translation is a symmetry, I is a symmetry.
\Rightarrow The correction terms for $\frac{\dot{r}}{r}$ can be ignored.
(2) $\left.\begin{array}{c}\text { steady, uniform } \\ \text { state }\end{array} \begin{array}{l}\frac{\partial f}{\partial \vec{k}} \cdot \dot{\vec{k}}=-\frac{g}{\tau} \quad\left(g \equiv f-f_{0}\right) \\ \dot{\vec{k}}=-\frac{e}{\hbar}(\vec{E}+\dot{\vec{r}} \times \vec{B})\end{array}\right\} \Rightarrow \begin{gathered}\frac{\partial f}{\partial \vec{k}} \cdot\left(-\frac{e}{\hbar}\right) \overrightarrow{\vec{E}}+\frac{\partial f}{\partial \vec{k}} \cdot\left(-\frac{e}{\hbar}\right)(\dot{\vec{r}} \times \vec{B})=-\frac{g}{\tau} \text {. } k \\ \downarrow\end{gathered}$

$$
-\frac{e}{\hbar} \frac{\partial f_{0}}{\partial \vec{k}} \cdot \vec{E} \quad-\frac{e}{\hbar} \frac{\partial g}{\partial \vec{k}} \cdot(\dot{\vec{r}} \times \vec{B})
$$

(linear response) (Fence $\frac{\partial f_{0}}{\partial \vec{k}} \cdot(\dot{\vec{r}} \times \vec{B})=0$)
Without loss of genevalites, assume $\vec{B}=B \hat{Z}$.
Then $-\frac{e}{\hbar} \frac{\partial g}{\partial \vec{k}} \cdot(\vec{v} \times \vec{B})=\frac{e B}{\hbar}(\hat{z} \times \vec{v}) \cdot \frac{\partial g}{\partial \vec{k}}$

$$
=\frac{e B}{\hbar} v_{\perp} \underbrace{\hat{k}_{11} \cdot \nabla_{k} g}_{\equiv \frac{\partial}{\partial S}}
$$

Change the coordinate system:

$$
\left.\begin{array}{rl}
* \Rightarrow \frac{e B}{\hbar} v_{\perp} \frac{\partial g}{\partial s}+\frac{q}{\tau} & =\frac{\partial f_{0}}{\partial \vec{k}} \cdot \frac{l}{\hbar} \vec{E} \\
\frac{e B}{\hbar} & \equiv l^{2}
\end{array}\right\} \Rightarrow \frac{\partial g}{\partial s}+\frac{l^{2}}{v_{\perp} \tau} g=\frac{e l^{2}}{\hbar v_{\perp}} \frac{\partial f}{\partial \vec{k}} \cdot \vec{E} \sim \frac{d y}{d x}+a y=b
$$

$\frac{d y}{d x}+a y=b$ can be solved by turning the l.h.s. into a single derivative.
Note $\frac{d}{d x} \exp \left[\int_{-\infty}^{x} a\left(x^{\prime}\right) d x^{\prime}\right]=a(x) \exp \left[\int_{-\infty}^{x} a\left(x^{\prime}\right) d x^{\prime}\right]$
$\frac{d y}{d x}+a y=b$ can be solved by turning the l-h.s. into a single derivative.
Note $\frac{d}{d x} \exp \left[\int_{-\infty}^{x} a\left(x^{\prime}\right) d x^{\prime}\right]=a(x) \exp \left[\cdot \int_{-\infty}^{x} a\left(x^{\prime}\right) d x^{\prime}\right]$
Then $\frac{d y}{d x} \underbrace{\int_{-\infty}^{x} a\left(x^{\prime}\right) d x^{\prime}}_{\frac{d}{d x}\left[y e^{\left.\int_{-\infty}^{x} a\left(x^{\prime}\right) d x^{\prime}\right]}\right.}+a e^{+\int_{-\infty}^{x} a\left(x^{\prime}\right) d x^{\prime}} y=b e^{\int_{-\infty}^{x} a\left(x^{\prime}\right) d x^{\prime}} \Rightarrow y e^{\int_{-\infty}^{x} a\left(x^{\prime}\right) d x^{\prime}}=y(-\infty)+\int_{-\infty}^{x} b\left(x^{\prime}\right) e^{\int_{-\infty}^{x^{\prime}} a\left(x^{\prime \prime}\right) d x^{\prime \prime}} d x^{\prime})$ if $y(-\infty)=0 \quad\}$

$$
\Rightarrow \underbrace{y(x)=\int_{-\infty}^{x} b\left(x^{\prime}\right) e^{-\int_{x^{\prime}}^{x} a\left(x^{\prime \prime}\right) d x^{\prime \prime}} d x^{\prime}}_{*}\} \Rightarrow g(s)=\left.\int_{-\infty}^{s} \frac{l^{2}}{v_{1}}\left(\frac{e}{\hbar} \frac{\partial f}{\partial k} \cdot \vec{E}\right)\right|_{s^{\prime}} e^{-\left.\int_{s^{\prime}}^{s} \frac{l^{2}}{v_{1} I}\right|_{s^{\prime \prime}} d s^{\prime \prime}} d s^{\prime}
$$

Physical meaning: $F_{1}\left(s^{\prime}\right) \propto$ particles excited by \vec{E} at position $\left.s^{\prime}\right\}$ $F_{2}\left(s^{\prime}\right) \propto$ decay along the path from s^{\prime} to s. $\}$
$\Rightarrow \quad s$ remaining particles that contribute to eeg. $\vec{j}=\int g(-e \vec{v})$
decay
S^{\prime} (generation by \vec{E})

Examples:

1. circular orbits.

$$
\begin{aligned}
& d s=k_{0} d \phi \\
& \vec{E}=E \hat{x} \\
& \left.\begin{array}{l}
v_{\perp}=\text { cons } \\
\frac{\partial f}{\partial \vec{k}} \cdot \vec{E}=\frac{\partial f}{\partial \varepsilon} \hbar v_{\perp} E \cos \phi
\end{array}\right\} \Rightarrow F_{1}\left(s^{\prime}\right)=\frac{\partial f}{\partial \varepsilon} l^{2} e E \cos \phi^{\prime}, ~ 子 \\
& \Rightarrow g(s)=g(\phi)=\int_{-\infty}^{\phi} k_{0} d \phi^{\prime}\left(\frac{\partial f}{\partial \varepsilon} l^{2} e E\right) \cos \phi^{\prime} e^{-\left(\phi-\phi^{\prime}\right) \frac{k_{0} l^{2}}{v_{1} \tau}} \\
& \left.\begin{array}{l}
\omega_{c}=\frac{2 \pi}{T}=\frac{2 \pi}{\int_{0}^{T} d t}=\frac{2 \pi}{\int_{0}^{2 \pi} \frac{d t}{d \phi} d \phi}=\frac{2 \pi}{\int_{0}^{2 \pi} \frac{d \phi}{\frac{\dot{s}}{k_{0}}}}=\frac{2 \pi}{\int_{0}^{2 \pi} \frac{k_{0} d \phi}{\frac{e B}{\hbar} v_{\perp}}}=\frac{e B v_{\perp}}{\hbar k_{0}}=\frac{v_{\perp}}{l^{2} k_{0}} \\
\therefore \omega_{c} \tau=\frac{v_{\perp} \tau}{l^{2} k_{0}} \Rightarrow \frac{k_{0} l^{2}}{v_{\perp} \tau}=\frac{1}{\omega_{c} \tau}
\end{array}\right\} \\
& \Rightarrow g(s)=\int_{-\infty}^{\phi}\left(\frac{\partial f}{\partial \varepsilon} k_{0} l^{2} e E\right) \cos \phi^{\prime} d \phi^{\prime} e^{-\frac{\phi-\phi^{\prime}}{\omega_{c \tau}}} \\
& \alpha \int_{0}^{\infty} \cos \left(\phi-\phi^{\prime}\right) e^{-\frac{\phi^{\prime}}{\omega_{c} \tau}} d \phi^{\prime}=\sum_{n=0}^{\infty} e^{-\frac{2 \pi n}{\omega_{c} \tau}} \int_{0}^{2 \pi} \cos \left(\phi-\phi^{\prime}\right) e^{-\frac{\phi^{\prime}}{\omega_{c} \tau}} d \phi^{\prime} \\
& =\frac{1}{1-e^{\frac{-2 \pi}{\omega_{c \tau}}}} \int_{0}^{2 \pi} \cos \left(\phi-\phi^{\prime}\right) e^{-\frac{\phi^{\prime}}{\omega_{c} \tau}} d \phi^{\prime} \simeq \frac{\omega_{c} \tau}{2 \pi} \int_{0}^{2 \pi} \cos \left(\phi-\phi^{\prime}\right) \sum_{n=0}^{\infty} \frac{\left(-\phi^{\prime}\right)^{n}}{n!}\left(\omega_{c} \tau\right)^{-n} d \phi^{\prime}
\end{aligned}
$$

ot order: $\quad \int_{0}^{2 \pi} \cos \left(\phi-\phi^{\prime}\right)=0$.
last order: $\sigma_{y x} \propto l^{2} \propto \frac{1}{B}, \quad \sigma_{x x}=0$.
and order : $\quad \sigma_{x x} \propto \frac{1}{R^{2}}$
lIst order: $\sigma_{y x} \propto l^{2} \propto \frac{1}{B}, \quad \sigma_{x x}=0$.
and order: $\quad \sigma_{x x} \propto \frac{1}{B^{2}}$
2. open orbits. $(\| \hat{x})$

$$
\begin{aligned}
& \vec{v}_{\perp}=v_{\perp} \hat{y} \\
& \frac{\partial f}{\partial \vec{k}} \cdot \vec{E}=\frac{\partial f}{\partial \varepsilon} \hbar v_{\perp} \hat{y} \cdot \vec{E}=\left\{\begin{array}{l}
0 \quad \vec{E} \| \hat{x} \\
\frac{\partial f}{\partial \varepsilon} \hbar v_{\perp} E \quad \vec{E} \| \hat{y}
\end{array}\right.
\end{aligned}
$$

\therefore open orbit can contribute to $v_{2 \beta}$ if β is perpendicular to the orbit. consider $\sigma_{3 y}$:

$$
\begin{array}{rl}
g(s) & =\int_{-\infty}\left(\frac{\partial f}{\partial \varepsilon} \hbar v_{\perp} E \frac{e l^{2}}{v \perp \hbar}\right) e^{-\frac{\left(s-s^{\prime}\right) l^{2}}{v_{\perp} \tau}} \\
& =\frac{\partial f}{\partial \varepsilon} e E l^{\prime}=\frac{\partial f}{\partial \varepsilon} e E l^{2} \int_{0}^{\infty} e^{-\frac{s^{\prime} l^{2}}{v_{\perp} \tau}} d s^{\prime} \\
l^{2} & O\left(B^{0}\right)
\end{array}
$$

$\therefore \sigma_{y y} \sim$ cost.

$$
\begin{aligned}
& \therefore P=\left(\begin{array}{cc}
\frac{A_{x x}}{B^{2}} & -\frac{A_{H}}{B} \\
\frac{A_{H}}{B} & A_{y y}
\end{array}\right)^{-1}=\frac{B^{2}}{A_{x x} A_{y y y}+A_{H 1}^{2}}\left(\begin{array}{cc}
A_{y y} & \frac{A_{H}}{B} \\
-\frac{A_{H}}{B} & \frac{A_{x x}}{B^{2}}
\end{array}\right) \\
& \Rightarrow P_{x x} \sim B^{2} \quad(\text { non-saturating) } \quad(I \| Q)
\end{aligned}
$$

Piss \sim canst (saturating) $(I \perp Q)$

Keys: closed orbit: $V_{x x} \sim\left(\omega_{c} \tau\right)^{-2}$
open orbit:
$(\| \hat{x})$.$\quad\left\{\begin{array}{l}\sigma_{y y} \sim \text { canst } x \tau \\ \sigma_{x x} \sim 0 .\end{array}\right.$

Solution for coupled orbits.

when orbits cross, a gap is usually opened due to degenerate perturbation.
\downarrow Under a finite B, since $\dot{\vec{k}}=-\frac{e}{\hbar} \dot{\vec{r}} \times \vec{B}$, particles have ${ }^{2}$ two possible choices: continue along the original orbit (no gap) - P or switch to the other orbit (finite gap). $-1-P=Q$ $P \sim \exp \left(-\frac{H_{0}}{H}\right) \quad H_{0}=H_{0}\left(\varepsilon_{F}, P_{z}\right)-B$ count. $\binom{N_{3}}{N_{4}}=\left(\begin{array}{ll}Q & P \\ P & Q\end{array}\right)\binom{N_{1}}{N_{2}} \Rightarrow \begin{array}{ll} & H \gg H_{0}-P=1 \quad \text { (complete breakdown) } \\ & H \rightarrow 0-P=0 \quad(n \theta \text { breakdown). }\end{array}$

Now consider an unfonitely complex network of coupled orbits.

- how to get a $g(s)$?

To perform the path summation, focus first on a MB junction th the network.

j, k, L - label all MB junctions in the network.

Goal: $g(s)$.
First $g(s)$ in terms of $g\left(s_{0}\right)$ and $s-s_{0}$

$$
\begin{aligned}
g(s) & =\int_{-\infty}^{s} F_{1}\left(s^{\prime}\right) \exp \left[-\int_{s^{\prime}}^{s} F_{2}\left(s^{\prime \prime}\right) d s^{\prime \prime}\right] d s^{\prime} \\
& =\int_{-\infty}^{s_{0}} F_{1}\left(s^{\prime}\right) \exp \left[-\int_{s^{\prime}}^{s_{0}} F_{2}\left(s^{\prime \prime}\right) d s^{\prime \prime}-\int_{s_{0}}^{s} F_{2}\left(s^{\prime \prime}\right) d s^{\prime \prime}\right] d s^{\prime}+\int_{s_{0}}^{s} F_{1}\left(s^{\prime}\right) e^{-\int_{s^{\prime}}^{s} F_{2}\left(s^{\prime \prime}\right) d s^{\prime \prime}} d s^{\prime} \\
& =e^{-\int_{s_{0}}^{s} F_{2}\left(s^{\prime \prime}\right) d s^{\prime}} g\left(s_{0}\right)+\int_{s_{0}}^{s} F_{1}\left(s^{\prime}\right) e^{-\int_{s^{\prime}}^{s} F_{2}\left(s^{\prime \prime}\right) d s^{\prime \prime}} d s^{\prime} \\
& \equiv c\left(s, s_{0}\right) g\left(s_{0}\right)+v\left(s, s_{0}\right)
\end{aligned}
$$

Now, $\quad g(s)=v\left(s, S_{L_{0}}\right)+c\left(s, s_{L_{0}}\right) g\left(s_{L_{0}}\right)$

$$
\begin{aligned}
& \left.\begin{array}{l}
g\left(s_{(0)}\right)=P_{k_{1} \rightarrow t_{0}} g\left(s_{k_{1}}\right)+P_{j_{1} \rightarrow l_{0}} g\left(s_{j_{1}}\right) \\
g\left(s_{k_{1}}\right)=v\left(s_{k_{1}}, s_{k_{0}}\right)+c\left(s_{k_{1}}, s_{k_{0}}\right) g\left(s_{k_{0}}\right) \\
g\left(s_{j_{1}}\right)=v\left(s_{j_{1}}, s_{j_{0}}\right)+c\left(s_{j_{1}}, s_{j_{0}}\right) g\left(s_{j_{0}}\right)
\end{array}\right\} \\
& \Rightarrow(\underbrace{g\left(s_{j_{0}}\right)})=\left(\begin{array}{l}
p_{k_{1} \rightarrow \dot{j}_{0}}
\end{array}\right)\left(g\left(s_{\left.k_{1}\right)}\right)\right.
\end{aligned}
$$

$$
\begin{aligned}
& \equiv M \quad \equiv C \quad=I \\
& \Rightarrow I=M \cdot V+M \cdot C \cdot I \Rightarrow I=(I I-M \cdot C)^{-1} \cdot M \cdot V
\end{aligned}
$$

After solung I or $g\left(s_{j_{0}}\right)$, we fchally have

$$
g(s)=c\left(s, s_{j_{0}}\right) g\left(s_{j_{0}}\right)+v\left(s, s_{j_{0}}\right) \quad * *
$$

Application to a minimal model:

1-open. $11 \hat{x}$
2 -closed.
One can calculate $\sigma_{\alpha \beta}$ exactly using ${ }^{*} *$, but let us consider four special cases below.

$$
\left\{\begin{array}{l}
\vec{E} \| \hat{x} \begin{cases}P=0 & (D) \\
P=1\end{cases} \\
\vec{E} \| \hat{y} \begin{cases}P=0 & \text { (3) } \\
P=1 & \text { (4) }\end{cases}
\end{array}\right.
$$

(1) $(\vec{E} \| \hat{x}, \quad P=0)$
 $P=0 \Rightarrow$ decoupled.
(2) $(\vec{E} \| \hat{x}, P=1)$
orbit I can contribute through $e^{-\int_{s^{\prime}}^{s} F_{2}\left(s^{\prime \prime}\right) d s^{\prime \prime}}$
particles effectively have to travel longer distances in order to fthish a cycle \Rightarrow more effective decay, or smaller $\left(\omega_{L_{2}} \tau\right)$.
$\Rightarrow J_{x x} \sim\left(\omega_{c_{2}} \tau\right)^{-2}$ rhcreases
(3) $(\vec{E} \| \hat{y}, P=0)$
orbit 1 is dominant $\Rightarrow \sigma_{y y} \sim$ const. $\times \tau$
(4) $(\vec{E} \| \hat{y}, P=1)$
orbit 2 makes 1 effectively longer - more decay due to $e^{-\int_{s^{\prime}}^{s}, F_{2}\left(s^{\prime \prime}\right) d s^{\prime \prime}}$ $\Rightarrow \sigma_{y y} \sim$ canst $\times I$ decreases.
(1), (2), (3), (4) $\Rightarrow\left\{\begin{array}{l}\sigma_{x x} \text { increases } \omega / P \\ \sigma_{x y} \text { decreases } \omega / P .\end{array}\right.$

Oscillation? $\quad P=P_{0}+P_{1} \cos \left(\frac{H_{0}}{H}+\phi_{0}\right)$
why? The "MB junction" is not a single junction but a small coherent network, e.g.

the classical tunneling probability can be calculated by solving a QM scattering problem.
classical orbits + QM effective MB junctions $=$ semiclassical theory of (low frequency) $S d H$ in coupled orbits

Recap:
(1) Incommensurate DW - intricate network of $\{$ semiclassical closed orbits.
semiclassical open orbits $\| \vec{Q}$
effective, coherent junctions of small remart FS pieces.
(2). coupling to open orbit will uhcrease the v due to closed orbits ($\left.\omega_{c} \tau\right) \downarrow$) closed decrease open ($\tau \downarrow)$
(3) " π phase shift" no drama.

