Magnetic Topological Quartun Chemstry

(1) Magretic Space Groups (MSGs)
(2) Represectations of MSGs and electrave bands
(3) Magnetic "band represectations"
(4) Magretic symmetry ndicatars of band tapolagy

Overview of Terminology

"Magretic Spaxe Graus" ${ }^{2}$
type-I granps: Let G be a type-I SSG $g \in G$ has the form $g=\{R \mid \vec{d}\}$ $\underset{\substack{\text { rotation on } \\ \text { reflection }}}{2}$ Hionilation

$$
g \vec{x}=R \vec{x}+\vec{d}
$$

giren $g_{1}=\left\{R_{1} \mid d_{1}\right\}, g_{2}=\left\{\vec{R}_{2} \mid \vec{d}_{2}\right\}$

- if $g_{1} \in G \quad g_{2} \in G$ then $g_{1} g_{2} \in G$

$$
g_{1} g_{2}=\left\{R_{1} \mid \vec{d}_{1}\right\}\left\{R_{2} \mid \vec{d}_{2}\right\}=\left\{R_{1} R_{2} \mid R_{1} \vec{d}_{2}+\vec{d}_{1}\right\}
$$

- Every space group contains $\{E \mid \varnothing\}$
- if $g=\{R \mid \vec{d}\} \in G$, then we can define

$$
\begin{aligned}
& g^{-1}=\left\{R^{-1} \mid-R^{-1} d\right\} \in G \text { and } \\
& g g^{-1}=\{E \mid \varnothing\}
\end{aligned}
$$

Remenber-electrons have spin- $-1 / 2$
In quantum mechanics, we learned that it we rotate a spin $-\frac{1}{2}|X\rangle$ by θ about an $a x / i \hat{\wedge}$

$$
\begin{aligned}
& a_{n} a_{x, i} \hat{\wedge} \hat{\hat{\theta}}_{\hat{\theta} \hat{\gamma}} \\
& \vec{\sigma}=\left\{\sigma_{x}, \sigma_{y}, \sigma_{z}\right\} \\
& \text { are Pauli matrices } \\
& \theta=2 \pi \quad e^{-i \frac{2 \pi}{2} \hat{n} \cdot \vec{\sigma}}=\cos \pi+i \sin \pi(\hat{n} \cdot \sigma)
\end{aligned}
$$

$$
=-1
$$

introduce $\underset{\substack{\hat{P} \\ \\ 2 \pi \\ \\ \\ \text { rotation }}}{\{\bar{E} \mid \notin\} \in G}$
Example: the double group 222

$$
\begin{aligned}
& \left\{C_{2 x}, C_{2 y}, C_{2 z}, E, \bar{E}\right\} \\
C_{2 x}^{2}= & C_{2 x} C_{2 x}=\bar{E}=C_{2 y}^{2}=C_{2 z}^{2} \\
C_{2 x} C_{2 y}= & C_{2 z}=\bar{E} C_{2 y} C_{2 x}
\end{aligned}
$$

$$
e^{-\frac{i \pi}{2} \sigma_{x}}=-i \sigma_{x} \hat{-}_{-i \sigma_{y}} \hat{\sigma}^{-i \sigma_{z}}
$$

- Every type-I SSG contains a Bravars lattice of tronslation $T=\left\langle\left\{E \mid \vec{t}_{1}\right\},\left\{E \mid \vec{t}_{2}\right\},\left\{E \mid \vec{t}_{3}\right\}\right\rangle$
(14 Bravars latties in 3D)
- If we "forget" about the tronslatson part of every element

$$
g=\{R \mid \vec{d}\} \rightarrow \bar{g}=R
$$

$$
\begin{aligned}
& g_{1}=\left\{R_{1} \mid \vec{d}_{1}\right\} \quad g_{2}=\left\{R_{2} \mid \vec{d}_{2}\right\} \\
& g_{1} g_{2}=\left\{R_{1} R_{2} \mid R_{1} \dot{d}_{2}+\vec{d}_{1}\right\} \\
& g_{1} \rightarrow R_{1} \quad g_{2} \rightarrow R_{2} \\
& g_{1} g_{2} \rightarrow R_{1} R_{2}
\end{aligned}
$$

"grape homomorphism"
the group of all \bar{g} is the point group \bar{G} of 6

$$
\bar{G}=G / T \quad g \rightarrow \bar{g}
$$

32 post groups

The relation between G and \bar{G} lets us divide space groups into 2 classes

1. Syumorphic Space groups

$$
\begin{aligned}
\bar{G}= & \{\{R \mid \sigma\} \mid R \in \bar{G}\} \subset G \\
& (73)
\end{aligned}
$$

2. Nonsymmorphic space greps -all the rest (157)
$\{R \mid \vec{d}\} \in G$ for \vec{d} a fraction of a Lattice trouslatisen

Type t SS63 are magretic space groups

aPI< point group I-no nontsvial
erimitine eperations
Bravais
latitue

Type -II space groups given any type I space grep G

$$
G_{\text {II }}=G \cup \sum_{\substack{\text { tine } \\ G}}
$$

tire-reversal symmetry, commutes with
all spatial symmetries

$$
\int\{R \mid \vec{d}\}=\{R \mid \vec{d}\} \vec{Z}
$$

$$
\widetilde{C} \in G_{I I} \text {-nonmagnetic }
$$

To construct the rest, lets start with a type-I group 6 "spaypseneated by,"
lot HCG

$$
\begin{aligned}
& \text { ex; } G=\left\langle\left\{E \mid t_{1}\right\},\left\{E \mid t_{t}\right\},\left\{E\left[\left.\right|_{t_{3}}\right\}, c_{4 z}\right\rangle\right. \\
& H=\left\langle\left\{E \mid t_{1}\right\},\left\{E| |_{2}\right\},\left\{E\left|\left[\mid t_{3}\right\}, C_{t z}\right\rangle\right.\right.
\end{aligned}
$$

we con define carets $g H=\{g h \mid h \in H\}$
Every $g^{\prime} 66$ is in exactly ene coset $g H$ this moans that we con write
$G=H \cup g_{1} H \cup g_{2} H \cdots$ the number of $\left\{g_{1}, g_{2}, \ldots\right\}$ are called coset the index of H in G representatives

$$
\begin{gathered}
\text { ex } G=\left\langle\left\{E \mid t_{1}\right\},\left\{E \mid t_{2}\right\},\left\{E \mid t_{3}\right\}, C_{4 z}\right\rangle-P 4 \\
H=\left\langle\left\{E \mid t_{1}\right\},\left\{E \mid t_{2}\right\},\left\{E \left\lvert\,\left[\frac{2 \xi_{3}}{}, G_{G_{7}}\right\rangle\right.\right.\right. \\
G=H \cup\left\{E \mid t_{3}\right\} H \quad[G ; H]=2
\end{gathered}
$$

Given a type- $I \operatorname{grap} G$ and an index-2 subgroup H

$$
G=H \cup g_{1} H
$$

we con construct a magnetic space group M as follows

$$
M=H \cup g, \tau H
$$

$$
\text { Type III }-g_{1}=\{R \mid \vec{d}\} \quad R \notin E
$$

Tree IV - $g_{1}=\{E \mid \vec{d}\}$
Type Z example

$$
\begin{aligned}
& G_{T}=\left\langle\vec{t}_{x}, \vec{t}_{y}, \vec{t}_{z}, C_{47}\right\rangle \\
& G_{\pi}=\left\langle\vec{t}_{x}, \vec{t}_{y}, \vec{t}_{z}, C_{4 z} T\right\rangle
\end{aligned}
$$

Gisa group, $H C G$ is a subgroup wart to show i every $g^{\prime} \in G$ is in exactly one coset of H

- $\left\{E \mid \varnothing \rho \in H \Rightarrow g^{\prime}\left\{E \mid \varnothing \rho=g^{\prime} \in g^{\prime} H\right.\right.$
lets assume $g^{\prime} \in g_{1} H, g^{\prime} \in g_{2} H$

$$
\begin{aligned}
& g^{\prime} \in g_{1} H \Rightarrow g^{\prime}=g_{1} h_{1} \quad h_{1} \in H \\
& g^{\prime} \in g_{2} H \Rightarrow g^{\prime}=g_{2} h_{2} \quad h_{2} \in H \\
& \Rightarrow g_{1} h_{1}=g_{2} h_{2}
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow g_{2}^{-1}\left(g_{1} h_{1}\right) h_{1}^{-1}=g_{2}^{-1}\left(g_{2} h_{2}\right) h_{1}^{-1} \\
& \Rightarrow g_{2}^{-1} g_{1}=h_{2} h_{1}^{-1} \in H \\
& \Rightarrow g_{2}^{-1} g_{1} H=H \\
& \Rightarrow g_{1} H=g_{2} H
\end{aligned}
$$

\Rightarrow every g^{\prime} is in exactly one coset

$$
T^{2}=\bar{E}
$$

II. Magnetic Space groups

Recall $\quad M=H \cup g ⿹ H \quad \begin{aligned} & T_{\text {ype-II: }}: g=\{E \mid \vec{d}\} \\ & T_{p p e}-\text { III } \quad g=\{R \mid \vec{d}\}\end{aligned}$
A note on terminology

Ex: Type- I group \#99 $\mathrm{P}_{\mathrm{c}}^{\mathrm{4mm}}$

For SSGs we will use r (prime) to indicate of an operation reverses time
Type II SSGs; we add I' to the end of the symbol P4mal $^{\prime}$
Type-III SSGS: we add / to the operators that reverse time

Type-IV: Two naming conventiens
BNS (Belou Nerenova, Smirnova) $M=H U\left\{E \mid d \int S H\right.$ We use the SG symbol for H, and incticate \{e|dj\} with a subsoriet

Ex: $P_{c} \psi=\left\langle a \hat{x}, a \hat{y}, c \hat{z}, C_{4 z}, \frac{c}{2} \hat{z} \times \widehat{J}\right\rangle$

- Electrons in (magnetic) solids

$$
\hat{H}|\psi\rangle=\left(\frac{p^{2}}{2 n}+V_{1}(x)+V_{2}(x, \bar{p}, \vec{\sigma})\right)|\psi\rangle=E|\psi\rangle
$$

with \hat{H} invariant under the symmetires of some SSG M

- ever M contains a bravas latice

$$
M \supset T=\left\langle\vec{t}_{1}, \vec{t}_{2}, \vec{t}_{3}\right\rangle
$$

Bloch's theoremi' let $U_{\vec{t}}=e^{-\vec{p} \cdot \vec{t} / \hbar}$ gererate troarlatorsby ti $\left[U_{\vec{t}}, H\right]=0 \Rightarrow$ we car simultaneeasly dagaralke

$$
\begin{array}{ll}
U_{\vec{t}} \text { ad } H \\
U_{\vec{t}}\left|\psi_{n k}\right\rangle=e^{-\vec{k} \cdot \vec{t}}\left|\psi_{n k}\right\rangle & \\
H\left|\psi_{n k}\right\rangle=E_{n k}\left|\psi_{n k}\right\rangle & \vec{b}_{i} \cdot \vec{t}_{j}=2 \pi \delta_{i j} \\
\vec{k}=k_{1} \vec{b}_{1}+k_{2} \vec{b}_{2}+k_{3} \vec{b}_{3} & k_{i} \in\left[-\frac{1}{2}, \frac{1}{2}\right]
\end{array}
$$

What about $g=\{R \mid \vec{d}\} \in M$
U_{g}-implements this symmetry on Hilbert space

$$
\begin{aligned}
& {\left[U_{g}, H\right]=0 \Rightarrow U_{g}\left|\psi_{n k}\right\rangle \text { is an ergesstate }} \\
& \text { if }\left|\psi_{n k}\right\rangle \text { is an ergestate } \\
& U_{\vec{t}}\left[U_{g}\left|\Psi_{n k}\right\rangle\right]=U_{\{E \mid \vec{b}\}} U_{\{R \mid \vec{d}\}}\left|\Psi_{n k}\right\rangle \\
& \| \quad\{E \mid \vec{t}\}\{R \mid \vec{d}\}=\{R \mid \vec{d}+\vec{t}\} \\
& =\{R \mid \vec{d}\}\left\{E \mid R^{-1} \vec{t}\right\} \\
& U_{g} U_{\left\{E \mid \mathbb{R}^{-1}\right\}}\left|\Psi_{n k}\right\rangle=U_{g} e^{-i k \cdot R^{-1} t}\left|\Psi_{n k}\right\rangle=e^{-i k \cdot R^{-1} t}\left[U_{g} \mid \Psi_{h k}\right]
\end{aligned}
$$

$$
k \cdot R^{-1} t=(R k) \cdot R R^{-1} t=R k \cdot t
$$

$U_{g}\left|\psi_{n k}\right\rangle$ is a Bloch state with crystal monition $R \vec{V}$

$$
\begin{aligned}
U_{g}\left|\psi_{n k}\right\rangle & =\sum_{M}\left|\psi_{M R k}\right\rangle\left\langle\left\langle\psi_{m R k}\right| U_{g} \mid \psi_{n k}\right\rangle \\
& \left.=\sum_{n}\left|\psi_{m R k}\right\rangle\right\rangle \underbrace{B_{m n}^{k}}_{\text {Sewing matrix for } g}(g)
\end{aligned}
$$

What about $\widehat{g S}=\{R \mid \vec{d}\} \widehat{\}}$

Wigner's thmi time-reversy operations are represented by antiunitory operators $A_{g s}$

$$
\begin{aligned}
\left.A_{s T} \text { is antiunitery } \begin{array}{rl}
f & \cdot A_{s s}(\alpha|\psi\rangle \\
& =\alpha^{*} A_{g s}|\varphi\rangle+\beta^{*} A_{s \delta}|\varphi\rangle \\
\cdot & \left\langle A_{g S} \psi \mid A_{g s} \varphi\right\rangle
\end{array}\right)=\langle\varphi \mid \psi\rangle=\langle\psi \mid \varphi\rangle^{*} \\
\left(A_{g J}\right)^{2} \text { is unstary }\left[\text { for } \operatorname{\text {Trs}} \widehat{S}^{2}=\vec{E}\right]
\end{aligned}
$$

$$
\begin{aligned}
U_{\vec{t}}\left[A_{g J}\left|\Psi_{n k}\right\rangle\right] & =A_{g J} U_{R^{-1} t}\left|\psi_{n k}\right\rangle \\
& =A_{g \sigma} e^{-i k \cdot R^{-1} t}\left|\psi_{n k}\right\rangle \\
& =e^{+i k \cdot R^{-1} t[}\left[A_{g} \tau\left|\psi_{n k}\right\rangle\right.
\end{aligned}
$$

$A_{s T}\left|\Psi_{n k}\right\rangle$ has crystal mamestan $-R \vec{k}$

$$
A_{g} \bar{j}\left|\psi_{n k}\right\rangle=\sum_{m}\left|\psi_{n-k k}\right\rangle\langle\underbrace{\left\langle\psi_{n-k l}\right| A_{g} \mid}_{B_{m \eta}^{k}(g J)} \mid \psi_{n k}\rangle
$$

Some thing social happens for $R k \equiv k$ modulo a reciprocal lattice vector
given k, M we define $M_{k}=\left\{g \in M \mid g k \equiv k_{\text {nod }}\right.$ reupraellotht
M_{k} is the little group of k vector)
$T \subset M_{k}$ for every $k \quad M_{k}$ is a SSG.
two cares: $M_{k}^{=} G_{k}$ rs a type $-I$ group

$$
M_{k}=G_{k} \cup \bar{g} G_{k} \text { for } G_{k} \text { a type -I gray }
$$

$$
\begin{aligned}
& H_{a b}(k)=\left\langle\psi_{a k}\right| H\left|\psi_{b k}\right\rangle=\left\langle\psi_{a k}\right| U_{g}^{+} H U_{g}\left|\psi_{b k}\right\rangle
\end{aligned}
$$

$$
\begin{aligned}
& =\left[b^{*}(g) H(k) B(g)\right]_{a b} \\
& \Rightarrow\left[H(k), B^{k}(g)\right]=0 \text { for } g \in G_{k}
\end{aligned}
$$

Schur's Lemma; States can be labelled by ineducable ropereations
of G_{k}.
Ex: type-I group $P 4=\left\langle a \hat{x}, a \hat{y}, c \hat{z}, C_{4 z}\right\rangle$ recip. lathe vectas $b_{1}=\frac{2 \pi}{a} \hat{x} \quad b_{2}=\frac{2 \pi}{a} \hat{y}, b_{3}=\frac{2 \pi}{c} \hat{\sigma}$

$$
\begin{array}{ll}
G_{\Gamma}=P 4 & G_{X}=P 2 \\
G_{M}=P 4 & G_{Y}=P 2
\end{array}
$$

For type I groups
What about type II -II groups:

- type II groups $M=G U J G ;$ at Time-Reversal Invar cont Momenta (TRIM) $k \equiv-k \bmod a$ recip lattice vector $\rightarrow M_{k}$ ssa type-II SSG otherwise M_{k} is atype I SSG
- Similar in type III: M_{k} is either a type III group
or a type I group
- in type II: M_{k} is either a type \mathbb{L} grape or a type I group, or a type III group
Lets consider a time-reveisig operation $g_{k} S \in M_{k}$ in the little graeae of some k point

$$
\begin{aligned}
& A_{g k, j}\left|\psi_{a k}\right\rangle=\sum_{b}\left|\psi_{b k}\right\rangle\left\langle\psi_{b k}\right| A_{s k}\left|\psi_{a k}\right\rangle
\end{aligned}
$$

We need to account for the fact that

$$
A_{g_{k j} J}\left(\alpha\left|\psi_{a k}\right\rangle\right)=\alpha^{*} A_{g_{k} J}\left|\psi_{a k}\right\rangle
$$

we introduce \mathcal{K}-represents complex conjugation

$$
A_{g_{k} J} \rightarrow B^{k}\left(g g_{j}\right) \notin
$$

A set of representation matrices w/ both unitary \&artiuntry operators is called a carepresentatien (corp)
Example: Type-III

$$
\begin{aligned}
P 4^{\prime} & =(P 2) \cup C_{4 z} \bar{J}(P 2) \\
& =\left\langle a \hat{x}, a \hat{y}, c \hat{z}, C_{4 z} \hat{J}, C_{z z}, E, E\right\rangle
\end{aligned}
$$

$$
\begin{array}{ll}
G_{F}=P 4^{\prime}-t_{y p e} \text { III } \quad G_{x}=G_{y}=P 2-t_{p e-}-I \\
G_{M}=P 4^{\prime}-t_{y p e} \text { II }
\end{array}
$$

Exampe:

$$
\begin{aligned}
& P_{0} I_{j}=P \perp \cup \frac{c}{\varepsilon} \hat{z} \widehat{S} P 1=\left\langle a \hat{a}, b \hat{b}, c \hat{z}, \frac{c}{\bar{z}} \overline{\vec{b}}, \bar{E}, \bar{c}\right\rangle \\
& \left.\left(\left\{E \left\lvert\, \frac{c}{\hat{z}}\right.\right\}\right\rangle \bar{J}\right)^{2}=\{\bar{E} \mid c \hat{z}\}=\{\bar{E} \mid O\}\{E \mid c \hat{c}\}
\end{aligned}
$$

$\left.\begin{array}{l}\text { Id- beetity } \\ \text { Matrox }\end{array} B^{k}\left(\sum \bar{E} \mid c \hat{z}\right\}\right)=(-I d) e^{-i k_{3} 2 \pi} / \begin{aligned} & -I d \text { when } k_{3}=0 \\ & +I d\end{aligned}$
$T=(0,0,0) ; G_{\Gamma}=P_{C} 1:$ antiuntary squeres to $01 \rightarrow K_{\text {savers dgebery }}$
$Z=\left(0,0, \frac{1}{2}\right): G_{z}=P_{c} I:$ antunitary squeres to $t \rightarrow$ No Kromes dypoem

III.(Magretic) Band representations
can we ron this in reverse?

$$
\left\{\left|\psi_{n, k}\right\rangle\right\} \rightarrow\left|W_{A R}\right\rangle=\sum_{R} e^{i k \cdot R}\left|\Psi_{1 k}\right\rangle
$$

Wannier functions $\left|W_{n R}\right\rangle-\begin{gathered}\text {-exponetitally bcalred } \\ - \text { symactic }\end{gathered}$
An , susbler car be adrabatically conected to an atomic luntt fre
can symmetrically move all the atoms apart w closing on energy gap (magnetic) topological insulators cant be adiabatically comected to an atomic lint wo closing asap \rightarrow no localized Wammerfunctions
Oar goals: 1. Characterize all atomic hit bonds (those with exp. localred Wanner factors) - topologically trivial bands
2. Identify nearionts that tell us when a set of bonds is topologically nontrivial

1. Pick a SSG G

Bravals lattice

$$
G_{\vec{q}}=\{g \in G \mid g \vec{q}=\vec{q}\}
$$

G_{g} is isomerplue to a (nagretic) point group. Called the site-symnetry group of \vec{q}.
in order to respect synuctries, orbitak (i) \vec{q} transform in coreps of G_{q}
lets say our valence orbirals $\left\{\left|W_{\text {noo }}\right\rangle\right\}$ transform in an irreducible corepresentation (coirep) ρ of G_{q}
Trenslation symmetry; we have copres $\left|W_{n o t}\right\rangle=U_{\vec{t}}\left|W_{n 00}\right\rangle$

This gives me a structure invariant under

$$
G_{q} \cup \vec{t}_{1} G_{q} \cup \vec{t}_{2} G_{q} \ldots \ln _{q} \subset G
$$

- What about ether elements of G ?

$$
G=T G_{q} \cup g_{1} T G_{q} \cup \ldots g_{n-1} T G_{q}
$$ 18, 185-189 (2022) Coset decomposition of G with n

representatives $\left\{_{g<1} \sum_{01} \mid \phi\right\}, g_{1}, g_{2}, \ldots g_{n-1}$

If we has orbitals at \vec{q}, it also reeds to have orbitals at $g_{i} \vec{q}$
$\left\{\left|w_{n i t}\right\rangle\right\}^{0}-$ form a corepesesentation of G
For any $g \in G \quad g=\{R \mid d\}$

$$
\begin{aligned}
& U_{g}\left|w_{n i \vec{t}}\right\rangle= U_{g} U_{\vec{t}} U_{g i}\left|w_{n 00}\right\rangle \\
&= U_{R \vec{t}} U_{g} U_{g i}\left|w_{100}\right\rangle \\
&=U_{R \vec{t}} U_{g g_{i}}\left|w_{n 00}\right\rangle \\
& g g_{i}=t_{i j}^{\prime} g_{j} h_{i j} \quad h_{i j} \in G_{q}
\end{aligned}
$$

$$
\begin{aligned}
t_{i j}^{\prime} & =g\left(g_{i} \cdot \vec{q}\right)-g_{j} \vec{q} \\
U_{g}\left|w_{n i t}\right\rangle & \rangle=\sum_{m}\left|W_{m j,}, R t+t_{i j}^{\prime}\right\rangle \rho_{m n}\left(h_{i j}\right)
\end{aligned}
$$

Founer trasfomi $\left|a_{n i k}\right\rangle=\sum_{t} e^{i k \cdot \vec{t}}\left|W_{n i \vec{t}}\right\rangle$

$$
\begin{aligned}
& U_{g}\left|a_{n i k}\right\rangle=\sum_{m j}\left|a_{m j, k k}\right\rangle B_{m j / n i}^{k}(g) \\
& >B_{m j n i}^{k}(g)=e^{-i R k \cdot t_{i j}} \rho_{m n}\left(h_{i j}\right)
\end{aligned}
$$

Points \vec{q} and theirsite-symaty grps
"Band represertation" are classifieduno Wyckoff positions

- MBANDREP tool
- MWYCKPOS on Bilbaa Server on Bilbao Crystollograpic Server
Exauple: $P_{6} M$ type IV $\left\langle t_{x}, t_{y}, t_{t}, m_{y}, \frac{1}{2} t_{y} \cdot S\right\rangle$

$$
\begin{aligned}
& G_{q_{1}}=\left\langle M_{y}\right\rangle=M \\
& G_{q_{2}}=\left\langle\left\{M_{y} \mid t_{y}\right\}\right\rangle=M
\end{aligned}
$$

$$
\begin{aligned}
& G_{q_{3}}=\left\langle\frac{1}{2} f_{y} S m_{y}\right\rangle \simeq m^{\prime} \\
& G_{q_{4}} z m^{\prime}
\end{aligned}
$$

Any band structwe that can be built from an atomic limit (ie, w/ exponentially localized, symmetric Wanner function) can be built from a sum of EBRS

sf fivial
If the bittle group coreps of the eccupred bands do not match a sum of EBRs, then the accupred bands must be topolegically nontrvial
To idertifly these lets rephare everythy as a hiear algebira probles
lets collect all the hitle group ireps at high symmetiy k ponts into \vec{r} - "syminetry data vecter"

$$
1 \times N_{\text {trepe }}
$$

$E B R$ table $E: N_{\text {trap }} \times N_{\text {ESR }}$

$$
\sigma_{k_{1}} ; e_{c} e_{0}
$$

$$
\vec{B} ; 1 \times N_{E B R} \text { - non-ngegatre integer } \quad \vec{v}=(1,0,1,0)
$$

$\vec{V}=\vec{E} \cdot \vec{B}$ gives the syminetry

Smith Decomposition: $E=L^{-1} \Lambda R$
L, R are integer valued AND their inverses ore niger

$$
\begin{aligned}
& \Lambda=\left(\begin{array}{lll}
a_{1} & a_{1} & \\
& & \\
& & o_{0_{0}}
\end{array}\right) \text { diagonal } a_{i} \geq 0 \\
& \vec{v}=L^{-1} \Lambda R \vec{B} \quad L \vec{v}=\vec{v}^{\prime} \\
& L \vec{V}=\Lambda(R \vec{B}) \\
& R \vec{B}=\vec{B}^{\prime} \\
& \vec{V}^{\prime}=\Lambda \vec{B}^{\prime}
\end{aligned}
$$

for ard $a_{i}>1$, we eta
\vec{v} that cannot come from
on integer linear combination of
ES
this defines a symnetry indector greup bands
$\mathbb{Z}_{a_{1}} \oplus \mathbb{Z}_{a_{2}} \oplus \cdots \oplus \mathbb{Z}_{a_{n}} \quad$ of topelogially natival

$$
\text { Exi } \quad T_{y p e}-\mathcal{I} \text { PI } \underbrace{\mathbb{Z}_{2} \oplus \mathbb{Z}_{2} \oplus \mathbb{Z}_{2} \oplus}_{\substack{\text { Chern } \# \text { in plowes } \\ \text { of fle bz }}} \oplus \underbrace{\mathbb{S}_{\text {strong invorat }}}_{\mathbb{Z}_{4}}
$$

The colmans of L^{-1} give us the sets of irress correspaty to our nontrivia bonds

Wieder et al Nat. Conmm 12, 5965 (2021)

