

Outline

Lecture 1: A primer on spin-orbitronics
Spin-orbit coupling in crystals, Dzyaloshinskii-Moriya interaction, spin-orbit torques

Lecture 2: Representation Theory applied to crystals
Group of symmetries, reducible and irreducible representations, orthogonality theorem, characters

Lecture 3: Character tables of crystal point groups
Salient features of the character table, invariant functions, decomposition theorem, product group
Lecture 4: Application to the $\mathrm{C}_{3 \mathrm{v}}$ point group
Hamiltonian, conductivity tensor, DMI and SOT

Lecture 5: Your turn, with the $\mathrm{C}_{4 \mathrm{v}}$ point group
Surprise me $;$

Lecture II

Representation Theory applied to crystals

Very quick reminder about crystal symmetries and point groups

system	Schoenflies symbol	Hermann-Mauguin symbol ${ }^{(\mathrm{b})}$		examples
		full	abbreviated	
triclinic	$\begin{aligned} & C_{1} \\ & C_{i},\left(S_{2}\right) \end{aligned}$	$\frac{1}{\overline{1}}$	$\frac{1}{1}$	$\mathrm{Al}_{2} \mathrm{SiO}_{5}$
monoclinic	$\begin{aligned} & \hline C_{1 h},\left(S_{1}\right) \\ & C_{2} \\ & C_{2 h} \\ & \hline \end{aligned}$	$\left\lvert\, \begin{aligned} & m \\ & 2 \\ & 2 / m \end{aligned}\right.$	$\begin{aligned} & m \\ & 2 \\ & 2 / m \end{aligned}$	KNO_{2}
orthorhombic	$\begin{aligned} & C_{2 v} \\ & D_{2},(V) \\ & D_{2 h},\left(V_{h}\right) \end{aligned}$	$\begin{aligned} & 2 m m \\ & 222 \\ & 2 / m 2 / m 2 / m \end{aligned}$	$\begin{aligned} & m m \\ & 222 \\ & m m m \end{aligned}$	I, Ga
tetragonal	$\begin{aligned} & C_{4} \\ & S_{4} \\ & C_{4 h} \\ & D_{2 d},\left(V_{d}\right) \\ & C_{4 v} \\ & D_{4} \\ & D_{4 h} \end{aligned}$	$\begin{aligned} & \hline \frac{4}{4} \\ & \frac{4}{4} m \\ & \overline{4} 2 m \\ & 4 m m \\ & 422 \\ & 4 / m \quad 2 / m \quad 2 / m \end{aligned}$	$\begin{array}{\|l\|} \hline 4 \\ \overline{4} \\ 4 / m \\ \overline{4} 2 m \\ 4 m m \\ 42 \\ 4 / \mathrm{mmm} \\ \hline \end{array}$	$\begin{aligned} & \mathrm{CaWO}_{4} \\ & \mathrm{TiO}_{2}, \mathrm{In}, \beta-\mathrm{Sn} \end{aligned}$

rhombohedra	$\begin{aligned} & C_{3} \\ & C_{3 i},\left(S_{6}\right) \\ & C_{3 v} \\ & D_{3} \\ & D_{3 d} \end{aligned}$	$\begin{array}{\|l\|} \hline 3 \\ \overline{3} \\ 3 m \\ 32 \\ \overline{3} 2 / m \end{array}$	$\begin{array}{\|l} \hline 3 \\ \overline{3} \\ 3 m \\ 32 \\ \overline{3} m \end{array}$	AsI_{3} FeTiO_{3} Se $\mathrm{Bi}, \mathrm{As}, \mathrm{Sb}, \mathrm{Al}_{2} \mathrm{O}_{3}$
hexagonal	$\begin{aligned} & C_{3 h},\left(S_{3}\right) \\ & C_{6} \\ & C_{6 h} \\ & D_{3 h} \\ & C_{6 v} \\ & D_{6} \\ & D_{6 h} \end{aligned}$	$\begin{aligned} & \hline \overline{6} \\ & 6 \\ & 6 / m \\ & \overline{6} 2 m \\ & 6 m m \\ & 622 \\ & 6 / m 2 / m \end{aligned}$		ZnO, NiAs CeF_{3} Mg, Zn, graphite
cubic		$\begin{aligned} & \hline 23 \\ & 2 / m \overline{3} \\ & \overline{4} 3 m \\ & 432 \\ & 4 / m \overline{3} 2 / m \end{aligned}$	$\begin{aligned} & 23 \\ & m 3 \\ & \overline{4} 3 m \\ & 43 \\ & m 3 m \end{aligned}$	$\begin{aligned} & \hline \mathrm{NaClO}_{3} \\ & \mathrm{FeS}_{2} \\ & \mathrm{ZnS} \\ & \beta-\mathrm{Mn} \\ & \mathrm{NaCl}, \text { diamond, } \mathrm{Cu} \end{aligned}$

i: inversion, $\mathrm{C}_{\mathrm{n}}: \mathrm{n}$-fold rotation, $\sigma_{\mathrm{h}, \mathrm{d}, \mathrm{d}}$: reflection $S_{n}: n$-fold improper rotation (rotation+reflection)

A few definitions

Definition of a group A collection of elements A, B, C, \ldots form a group when the following four conditions are satisfied:

1. The product of any two elements of the group is itself an element of the group. For example, relations of the type $A B=C$ are valid for all members of the group.
2. The associative law is valid - i.e., $(A B) C=A(B C)$.
3. There exists a unit element E (also called the identity element) such that the product of E with any group element leaves that element unchanged $A E=E A=A$.
4. For every element A there exists an inverse element A^{-1} such that $A^{-1} A=$ $A A^{-1}=E$.

In general, the elements of a group will not commute, i.e., $A B \neq B A$. But if all elements of a group commute, the group is then called an Abelian group.

Conjugation An element B conjugate to A is by definition $B \equiv X A X^{-1}$, where X is an arbitrary element of the group.

Definition of a class

A class is the totality of elements which can be obtained from a given group element by conjugation

The symmetries of a crystal form a group: The equilateral triangle Rhombohedral D_{3} (32)

- 1 Identity
- $2 \mathrm{C}_{3}$ rotations around the origin
- $3 \mathrm{C}_{2}$ rotations around the three axes
D_{3} is a group of order 6 It possesses 3 classes

Very important because \#irrep = \#classes

$D_{3}(32)$			E	$2 C_{3}$	$3 C_{2}^{\prime}$
$x^{2}+y^{2}, z^{2}$					
$\left.\begin{array}{l}(x z, y z) \\ \left(x^{2}-y^{2}, x y\right)\end{array}\right\}$	R_{z}, z	A_{1}	1	1	1

Principles and Applications of Symmetry in Magnetism (PASM), Summer School
Fort Collins, Colorado
Crystal symmetries form a group: The tetrahedron
Cubic $\mathrm{T}_{\mathrm{d}}(\overline{4} 3 \mathrm{~m})$

- 1 Identity
- $8 \mathrm{C}_{3}$ rotations around $\{111\}$
- $3 \mathrm{C}_{2}$ rotations around $\{001\}$
- $6 \sigma_{\mathrm{d}}$ reflections on the diagonal plane
- $6 \mathrm{~S}_{4}$ improper rotations
T_{d} is a group of order 24
It possesses 5 classes

$T_{d}(\overline{4} 3 m)$		E	$8 C_{3}$	$3 C_{2}$	$6 \sigma_{d}$	$6 S_{4}$		
$x^{2}+y^{2}+z^{2}$	A_{1}	1	1	1	1	1		
$\left(x^{2}-y^{2}, 3 z^{2}-r^{2}\right)$	A_{2}	1	1	1	-1	-1		
$\left(R_{x}, R_{y}, R_{z}\right)$								
$y z, z x, x y)$							$\} \quad$	1
:---								
(x, y, z)								

Introducing representations

Definition 13. A representation of an abstract group is a substitution group

 (matrix group with square matrices) such that the substitution group is homomorphic (or isomorphic) to the abstract group. We assign a matrix $D(A)$ to each element A of the abstract group such that $D(A B)=D(A) D(B)$.In other words, any symmetry operation can be
represented by a square matrix, called a representation
In $2 \mathrm{~d},(\mathrm{x}, \mathrm{y})$, we naturally get the following representation

$$
E=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \quad A=\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right) \quad B=\left(\begin{array}{cc}
\frac{1}{2} & -\frac{\sqrt{3}}{2} \\
-\frac{\sqrt{3}}{2} & -\frac{1}{2}
\end{array}\right)
$$

$$
\begin{gathered}
E=\left(\begin{array}{lll}
1 & 2 & 3 \\
1 & 2 & 3
\end{array}\right) \\
\text { identity }
\end{gathered} \quad A=\left(\begin{array}{lll}
1 & 2 & 3 \\
1 & 3 & 2
\end{array}\right) \quad B=\left(\begin{array}{lll}
1 & 2 & 3 \\
3 & 2 & 1 \\
\mathrm{C}_{2}
\end{array}\right)
$$

$$
C=\left(\begin{array}{cc}
\frac{1}{2} & \frac{\sqrt{3}}{2} \\
\frac{\sqrt{3}}{2} & -\frac{1}{2}
\end{array}\right) \quad D=\left(\begin{array}{cc}
-\frac{1}{2} & \frac{\sqrt{3}}{2} \\
-\frac{\sqrt{3}}{2} & -\frac{1}{2}
\end{array}\right) \quad F=\left(\begin{array}{cc}
-\frac{1}{2} & -\frac{\sqrt{3}}{2} \\
\frac{\sqrt{3}}{2} & -\frac{1}{2}
\end{array}\right)
$$

$$
C_{\mathrm{C}_{2}}=\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 1 & 3
\end{array}\right) \quad D=\left(\begin{array}{lll}
1 & 2 & 3 \\
3 & 1 & 2
\end{array}\right) \quad F=\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 3 & 1
\end{array}\right)
$$

This representation is NOT unique!

Introducing representations

We can also build a representation of dimension 1

$$
\begin{array}{cc}
E=\left(\begin{array}{lll}
1 & 2 & 3 \\
1 & 2 & 3
\end{array}\right) & A=\left(\begin{array}{lll}
1 & 2 & 3 \\
1 & 3 & 2
\end{array}\right)
\end{array} \quad B=\left(\begin{array}{lll}
1 & 2 & 3 \\
3 & 2 & 1
\end{array}\right), ~\left(\begin{array}{cc}
\mathrm{C}_{2}
\end{array}\right)
$$

Multiplication table						
	E	A	B	C	D	F
E	E	A	B	C	D	F
A	A	E	D	F	B	C
B	B	F	E	D	C	A
C	C	D	F	E	A	B
D	D	C	A	B	F	E
F	F	B	C	A	E	D

$$
(E, D, F)=\mathcal{E}
$$

is a self-conjugated subgroup

$$
(A, B, C)=\mathcal{A}
$$

is called a coset of this subgroup

| | $\mathcal{E} \mathcal{A}$ |
| :--- | :--- | :--- |
| \mathcal{E} | $\mathcal{E} \mathcal{A}$ |
| \mathcal{A} | $\mathcal{A} \mathcal{E}$ |

This group (called the factor group) is isomorphic to the permutation group $\mathrm{P}(2)$. In $1 \mathrm{~d}, z$, the representation is

$$
\left.\left.\begin{array}{l}
E \\
D \\
F
\end{array}\right\} \rightarrow \begin{array}{l}
\\
\rightarrow \boldsymbol{Z} \rightarrow \boldsymbol{Z}
\end{array} \quad \begin{array}{l}
A \\
B
\end{array}\right\} \rightarrow \begin{aligned}
& (-1) \\
& \boldsymbol{Z} \rightarrow-\boldsymbol{Z}
\end{aligned}
$$

Introducing representations

In summary, for D_{3}, we have found 3 representations

In principle, we could also build 4 d representations, for instance

This is called a reducible representation, which can be written in terms of the irreducible ones

$$
\Gamma_{\mathrm{R}}=\Gamma_{1}+\Gamma_{1^{\prime}}+\Gamma_{2}
$$

Schur's lemma - for real

Lemma. A matrix which commutes with all matrices of an irreducible representation is a constant matrix, i.e., a constant times the unit matrix. Therefore, if a non-constant commuting matrix exists, the representation is reducible; if none exists, the representation is irreducible.

Lemma. If the matrix representations $D^{(1)}\left(A_{1}\right), D^{(1)}\left(A_{2}\right), \ldots, D^{(1)}\left(A_{h}\right)$ and $D^{(2)}\left(A_{1}\right), D^{(2)}\left(A_{2}\right), \ldots, D^{(2)}\left(A_{h}\right)$ are two irreducible representations of a given group of dimensionality ℓ_{1} and ℓ_{2}, respectively, then, if there is a matrix of ℓ_{1} columns and ℓ_{2} rows M such that

$$
\begin{equation*}
M D^{(1)}\left(A_{x}\right)=D^{(2)}\left(A_{x}\right) M \tag{2.38}
\end{equation*}
$$

for all A_{x}, then M must be the null matrix $(M=\mathcal{O})$ if $\ell_{1} \neq \ell_{2}$. If $\ell_{1}=\ell_{2}$, then either $M=\mathcal{O}$ or the representations $D^{(1)}\left(A_{x}\right)$ and $D^{(2)}\left(A_{x}\right)$ differ from each other by an equivalence (or similarity) transformation.

Introducing representations

Definition 16. If by one and the same equivalence transformation, all the matrices in the representation of a group can be made to acquire the same block form, then the representation is said to be reducible; otherwise it is irreducible. Thus, an irreducible representation cannot be expressed in terms of representations of lower dimensionality.

Principles and Applications of Symmetry in Magnetism (PASM), Summer School
Fort Collins, Colorado

Character of a representation

The concrete matrix representation of a point group can be very heavy to handle Fortunately, the matrices of the irreducible representations obey a number of rules

1. Unitarity Every representation with matrices having nonvanishing determinants can be brought into unitary form by an equivalence (similarity) transformation.
\# elements of the group
2. Wonderful orthogonality theorem

3. Character Since the trace (or character) of a matrix remains invariant upon equivalence transformation, the character of each element in a class is the same..so a class can be tagged by its character

Fort Collins, Colorado

Character of a representation

Definition 17. The character of the matrix representation $\chi^{\Gamma_{j}}(R)$ for a symmetry operation R in a representation $D^{\left(\Gamma_{j}\right)}(R)$ is the trace (or the sum over diagonal matrix elements) of the matrix of the representation:

$$
\begin{equation*}
\chi^{\left(\Gamma_{j}\right)}(R)=\operatorname{trace} D^{\left(\Gamma_{j}\right)}(R)=\sum_{\mu=1}^{\ell_{j}} D^{\left(\Gamma_{j}\right)}(R)_{\mu \mu} \tag{3.1}
\end{equation*}
$$

Let's build the character table of D_{3}
$\left.\begin{array}{ccccccc} & E & A & B & C & D & F \\ \Gamma_{1}: & (1) & (1) & (1) & (1) & (1) & (1) \\ \Gamma_{1^{\prime}}: & (1) & (-1) & (-1) & (-1) & (1) & (1) \\ \Gamma_{2}: & \left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right) & \left(\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right) & \left(\begin{array}{c}\frac{1}{2} \\ -\frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2}\end{array}\right) & \left(\begin{array}{c}\frac{1}{2}\end{array}\right) & \frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2}-\frac{1}{2}\end{array}\right)\left(\begin{array}{cc}-\frac{1}{2} & \frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & -\frac{1}{2}\end{array}\right)\left(\begin{array}{c}-\frac{1}{2}-\frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2}\end{array}-\frac{1}{2}\right)$.

Character of a representation

Definition 17. The character of the matrix representation $\chi^{\Gamma_{j}}(R)$ for a symmetry operation R in a representation $D^{\left(\Gamma_{j}\right)}(R)$ is the trace (or the sum over diagonal matrix elements) of the matrix of the representation:

$$
\begin{equation*}
\chi^{\left(\Gamma_{j}\right)}(R)=\operatorname{trace} D^{\left(\Gamma_{j}\right)}(R)=\sum_{\mu=1}^{\ell_{j}} D^{\left(\Gamma_{j}\right)}(R)_{\mu \mu} \tag{3.1}
\end{equation*}
$$

Let's build the character table of D_{3}

class \rightarrow	\mathcal{C}_{1}	$3 \mathcal{C}_{2}$	$2 \mathcal{C}_{3}$
IR \downarrow	$\chi(E)$	$\chi(A, B, C)$	$\chi(D, F)$
Γ_{1}	1	1	1
$\Gamma_{1^{\prime}}$	1	-1	1
Γ_{2}	2	0	-1

Character of a representation

The characters also obey a number of very useful rules

1. First orthogonality theorem for characters

2. Second orthogonality theorem for characters

$$
\sum_{\Gamma_{j}} \chi^{\left(\Gamma_{j}\right)}\left(\mathcal{C}_{k}\right)\left[\chi^{\left(\Gamma_{j}\right)}\left(\mathcal{C}_{k^{\prime}}\right)\right]^{*} N_{k}=h \delta_{k k^{\prime}}
$$

This equality sets the relation between the columns of the χ-table

Theorem. A necessary and sufficient condition that two irreducible representations be equivalent is that the characters be the same.

Salient features of a character table $\mathrm{C}_{6 v}$

$C_{6 v}(6 m m)$			E		$2 C_{3}$	$2 C_{6}$	$3 \sigma_{d}$	$3 \sigma_{v}$
$\overline{x^{2}+y^{2}, z^{2}}$	$\begin{aligned} & z \\ & R_{z} \end{aligned}$	$A_{1}$$A_{2}$	-1	1	1	1	1	1
				1	1	1	-1	-1
		B_{1}	1	-1	1	-1	-1	1
	(x, y)	B_{2}	1	-1	1	-1	1	-1
($x z, y z$)		E_{1}		-2	-1	1	0	0
$\left(x^{2}-y^{2}, x y\right)$		E_{2}		2	-1	-1	0	0
$\sum_{k} N_{k} \chi^{\left(\Gamma_{i}\right)}\left(\mathcal{C}_{k}\right)=0$					$\sum_{\Gamma_{i}} \chi^{\left(\Gamma_{i}\right)}\left(\mathcal{C}_{k}\right) \ell_{i}=0$			
		$\chi^{\left(\Gamma_{i}\right)}(E)=\ell_{i}$						

Character of a representation

Now let's build the character table for two cases

Group D_{3}			
	\mathcal{C}_{1}	$3 \mathcal{C}_{2}$	$2 \mathcal{C}_{3}$
Γ_{1}	1	1	1
$\Gamma_{1^{\prime}}$	1		
Γ_{2}	2		

Group C ${ }_{3}$

Principles and Applications of Symmetry in Magnetism (PASM), Summer School
Fort Collins, Colorado

Decomposition of a reducible representation

Any reducible representation can be expressed in terms of irreducible ones
Not only very useful for computational purpose but also informative from a physics standpoint
Let's consider spherical orbitals in a cubic environment (group O)

$$
Y_{\ell, m}(\theta, \phi)=C P_{\ell}^{m}(\theta) \mathrm{e}^{\mathrm{i} m \phi}
$$

First determine the characters of their representation in O Rotation of angle α around z

$$
D^{(\ell)}(\alpha)=\left(\begin{array}{cccc}
\mathrm{e}^{-\mathrm{i} \ell \alpha} & & & \mathcal{O} \\
& \mathrm{e}^{-\mathrm{i}(\ell-1) \alpha} & & \\
& & \ddots & \\
\mathcal{O} & & & \mathrm{e}^{\mathrm{i} \ell \alpha}
\end{array}\right) \quad \square \chi^{(\ell)}(\alpha)=\frac{\sin \left[\left(\ell+\frac{1}{2}\right) \alpha\right]}{\sin [\alpha / 2]}
$$

Inversion

$$
\chi^{(\ell)}(i)=\sum_{m=-\ell}^{m=\ell}(-1)^{\ell}=(-1)^{\ell}(2 \ell+1)
$$

Decomposition of a reducible representation

We deduce the character table for the various harmonics

	O	E	$8 C_{3}$	$3 C_{2}=3 C_{4}^{2}$	$6 C_{2}^{\prime}$	$6 C_{4}$
Γ_{1}	A_{1}	1	1	1	1	1
Γ_{2}	A_{2}	1	1	1	-1	-1
Γ_{12}	E	2	-1	2	0	0
$\Gamma_{15^{\prime}}$	T_{1}	3	0	-1	-1	1
$\Gamma_{25^{\prime}}$	T_{2}	3	0	-1	1	-1
$\Gamma_{\ell=0}$	A_{1}	1	1	1	1	1
$\Gamma_{\ell=1}$	T_{1}	3	0	-1	1	-1
$\Gamma_{\ell=2}$	$E+T_{2}$	5	-1	1	1	-1
$\Gamma_{\ell=3}$	$A_{2}+T_{1}+T_{2}$	7	1	-1	-1	-1
$\Gamma_{\ell=4}$	$A_{1}+E+T_{1}+T_{2}$	9	0	1	1	1
$\Gamma_{\ell=5}$	$E+2 T_{1}+T_{2}$	11	-1	-1	-1	1

Decomposition formula

$$
\begin{gathered}
\chi\left(\mathcal{C}_{k}\right)=\sum_{\Gamma_{i}} a_{i} \chi^{\left(\Gamma_{i}\right)}\left(\mathcal{C}_{k}\right) \\
a_{j}=\frac{1}{h} \sum_{k} N_{k}\left[\chi^{\left(\Gamma_{j}\right)}\left(\mathcal{C}_{k}\right)\right]^{*} \chi\left(\mathcal{C}_{k}\right)
\end{gathered}
$$

For instance, for $1=2$

Spherical O symmetry symmetry octahedral crystal field

Invariant theory and basis functions

We have talked a lot about how symmetry operations can be represented by matrices
Now, let us determine the functions that remain invariant under these operations
Associated with each irreducible representation, these "basis functions" can be used to generate the matrices that represent the symmetry elements of a particular irreducible representation.

The basis vectors $\left|\Gamma_{n} j\right\rangle$ form an orthonormal basis

$$
\text { Therefore } \quad D^{\left(\Gamma_{n}\right)}(R)_{j \alpha}=\left\langle\Gamma_{n} j\right| \hat{P}_{R}\left|\Gamma_{n} \alpha\right\rangle
$$

Invariant theory and basis functions

Let's go back to our D_{3} group

Invariant theory and basis functions

Let's go back to our D_{3} group

\hat{P}_{R}	$x^{\prime 2}$	$y^{\prime 2}$	$z^{\prime 2}$
$E=E$	x^{2}	y^{2}	z^{2}
$C_{3}=F$	$\frac{1}{4}\left(x^{2}+3 y^{2}-2 \sqrt{3} x y\right)$	$\frac{1}{4}\left(y^{2}+3 x^{2}+2 \sqrt{3} x y\right)$	z^{2}
$C_{3}^{-1}=D$	$\frac{1}{4}\left(x^{2}+3 y^{2}+2 \sqrt{3} x y\right)$	$\frac{1}{4}\left(y^{2}+3 x^{2}-2 \sqrt{3} x y\right)$	z^{2}
$C_{2(1)}=A$	x^{2}	y^{2}	z^{2}
$C_{2(2)}=B$	$\frac{1}{4}\left(x^{2}+3 y^{2}-2 \sqrt{3} x y\right)$	$\frac{1}{4}\left(y^{2}+3 x^{2}+2 \sqrt{3} x y\right)$	z^{2}
$C_{2(3)}=C$	$\frac{1}{4}\left(x^{2}+3 y^{2}+2 \sqrt{3} x y\right)$	$\frac{1}{4}\left(y^{2}+3 x^{2}-2 \sqrt{3} x y\right)$	z^{2}

class \rightarrow	\mathcal{C}_{1}	$3 \mathcal{C}_{2}$	$2 \mathcal{C}_{3}$
$\mathrm{IR} \downarrow$	$\chi(E)$	$\chi(A, B, C)$	$\chi(D, F)$
Γ_{1}	1	1	1
$\Gamma_{1^{\prime}}$	1	-1	1
Γ_{2}	2	0	-1

Invariant theory and basis functions

Let's go back to our D_{3} group

$$
\begin{array}{lccl}
\hat{P}_{R} & x^{\prime 2} & y^{\prime 2} & z^{\prime 2} \\
E=E & x^{2} & y^{2} & z^{2} \\
C_{3}=F & \frac{1}{4}\left(x^{2}+3 y^{2}-2 \sqrt{3} x y\right) & \frac{1}{4}\left(y^{2}+3 x^{2}+2 \sqrt{3} x y\right) & z^{2} \\
C_{3}^{-1}=D & \frac{1}{4}\left(x^{2}+3 y^{2}+2 \sqrt{3} x y\right) & \frac{1}{4}\left(y^{2}+3 x^{2}-2 \sqrt{3} x y\right) & z^{2} \\
C_{2(1)}=A & x^{2} & y^{2} & z^{2} \\
C_{2(2)}=B & \frac{1}{4}\left(x^{2}+3 y^{2}-2 \sqrt{3} x y\right) & \frac{1}{4}\left(y^{2}+3 x^{2}+2 \sqrt{3} x y\right) & z^{2} \\
C_{2(3)}=C & \frac{1}{4}\left(x^{2}+3 y^{2}+2 \sqrt{3} x y\right) & \frac{1}{4}\left(y^{2}+3 x^{2}-2 \sqrt{3} x y\right) & z^{2}
\end{array} \quad \begin{gathered}
D(x y)=\frac{1}{4}\left(-2 x y-\sqrt{3}\left[x^{2}-y^{2}\right]\right) \\
D(x z)=\left(-\frac{x}{2}-\frac{\sqrt{3}}{2} y\right) z,-\frac{1}{4}\left(2\left[x^{2}-y^{2}\right]-4 \sqrt{3} x y\right) \\
D(y z)=\left(-\frac{y}{2}+\frac{\sqrt{3}}{2} x\right) z .
\end{gathered}
$$

Invariant theory and basis functions

So, in summary

$D_{3}(32)$			E	$2 C_{3}$	$3 C_{2}^{\prime}$
$x^{2}+y^{2}, z^{2}$					
$\left.\begin{array}{l}(x z, y z) \\ \left.\begin{array}{l}\left(x^{2}-y^{2}, x y\right)\end{array}\right\}\end{array} \begin{array}{l}R_{z}, z \\ (x, y) \\ \left(R_{x}, R_{y}\right)\end{array}\right\}$	A_{1}	1	1	1	
A_{2}	1	1	-1		
E	2	-1	0		

Projection operators

We define the projection operator acting on a basis $\hat{P}_{k \ell}^{\left(\Gamma_{n}\right)}\left|\Gamma_{n} \ell\right\rangle \equiv\left|\Gamma_{n} k\right\rangle$
Explicitly

$$
\hat{P}_{k \ell}^{\left(\Gamma_{n}\right)}=\frac{\ell_{n}}{h} \sum_{R} D^{\left(\Gamma_{n}\right)}(R)_{k \ell}^{*} \hat{P}_{R}
$$

Therefore, for a general function

$$
F=\sum_{\Gamma_{n^{\prime}}} \sum_{j^{\prime}} f_{j^{\prime}}^{\left(\Gamma_{n^{\prime}}\right)}\left|\Gamma_{n^{\prime}} j^{\prime}\right\rangle
$$

The projection operation yields $\hat{P}_{k k}^{\left(\Gamma_{n}\right)} F=f_{k}^{\left(\Gamma_{n}\right)}\left|\Gamma_{n} k\right\rangle$

This procedure allows us to expression a general function in the basis of invariants

Projection operators

Back to our favorite D_{3}
We apply the projection procedure on $\psi_{\mathrm{a}}=\mathrm{a}, \psi_{\mathrm{b}}=\mathrm{b}, \psi_{\mathrm{c}}=\mathrm{c}$

$$
\begin{gathered}
\hat{P}^{\left(\Gamma_{n}\right)} a=\frac{\ell_{n}}{h} \sum_{R} \chi^{\left(\Gamma_{n}\right)}(R)^{*} \hat{P}_{R} a=f^{\left(\Gamma_{n}\right)}\left|\Gamma_{n}\right\rangle \\
\hat{P}^{\left(\Gamma_{1}\right)} a=\hat{P}^{\left(\Gamma_{1}\right)} b=\hat{P}^{\left(\Gamma_{1}\right)} c=\frac{1}{3}(a+b+c) \\
\hat{P}^{\left(\Gamma_{1^{\prime}}\right)} a=\hat{P}^{\left(\Gamma_{1^{\prime}}\right)} b=\hat{P}^{\left(\Gamma_{1^{\prime}}\right)} c=0
\end{gathered}
$$

For the 2 d representation, we rather start with a trial function

$$
\left|\Gamma_{2} \alpha\right\rangle=a+\omega b+\omega^{2} c, \omega=\mathrm{e}^{2 \pi \mathrm{i} / 3}
$$

Which yields $\quad\left|\Gamma_{2} \alpha\right\rangle=a+\omega b+\omega^{2} c, \quad\left|\Gamma_{2} \beta\right\rangle=a+\omega^{2} b+\omega c$.

