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Lecture 1: A primer on spin-orbitronics
Spin-orbit coupling in crystals, Dzyaloshinskii-Moriya interaction, spin-orbit torques

Lecture 2: Representation Theory applied to crystals
Group of symmetries, reducible and irreducible representations, orthogonality theorem, characters

Lecture 3: Character tables of crystal point groups
Salient features of the character table, invariant functions, decomposition theorem, product group

Lecture 4: Application to the C;, point group
Hamiltonian, conductivity tensor, DMI and SOT

Lecture 5: Your turn, with the C,, point group
Surprise me ©
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Lecture 11
Representation Theory applied to crystals
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Very quick reminder about crystal symmetries and point groups

system Schoenflies|Hermann-Mauguin symbol™® |examples
symbol full abbreviated
triclinic Ch 1 1
Ci,(S2) |1 1 Al2SiOs
monoclinic Cin, (S1) |m m KNO»
Cs 2 2
Cop, 2/m 2/m
orthorhombic |C', 2mm mm
Do, (V) [222 222
Dop, (V1) [2/m 2/m 2/m |mmm I, Ga
tetragonal Cla 4 4
Sy 4 4
Cun 4/m 4/m CaWO4
Doa, (Va) |42m 42m
Clao 4dmm 4dmm
Dy 422 42
Duyp, 4/m 2/m 2/m |4/mmm TiO2, In, 3-Sn

rhombohedral |C'3 3 3 Asls
C3i,(Se) |3 3 FeTiO3
Csy 3m 3m
D3 32 32 Se
Dsq 32/m 3m Bi, As, Sb, Al2O3
hexagonal Csn, (S3) |6 6
Cs 6 6
Cén 6/m 6/m
Dsy, 62m 62m
Cev 6mm 6mm Z/mO, NiAs
Ds 622 62 CeF3
Dep, 6/m 2/m 2/m [6/mmm Mg, Zn, graphite
cubic Z 23 23 NaClOs3
£ 2/m3 m3 FeSo
7 43m 43m ZnS
O 432 43 B-Mn
On 4/m 3 2/m |m3m NaCl, diamond, Cu

i: inversion, C: n-fold rotation, oy, 4: reflection
S,: n-fold improper rotation (rotation+reflection)
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A few definitions

Definition of a group A collection of elements A, B,C,... form a group when the following four
conditions are satisfied:

1. The product of any two elements of the group is itself an element of
the group. For example, relations of the type AB = C' are valid for all
members of the group.

2. The associative law is valid — i.e., (AB)C = A(BC).

3. There exists a unit element E (also called the identity element) such that
the product of E with any group element leaves that element unchanged

AE =FA = A.
4. For every element A there exists an inverse element A~! such that A=1A =
AA~ = F,

In general, the elements of a group will not commute, i.e., AB # BA. But if
all elements of a group commute, the group is then called an Abelian group.

Conjugation  An element B conjugate to A is by definition B = X AX 1,

where X is an arbitrary element of the group.

Definition of a class
A class is the totality of elements which can be obtained from a given group element by conjugation
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The symmetries of a crystal form a group: The equilateral triangle

Rhombohedral D5 (32)

e 1 Identity
* 2 C; rotations around the origin
* 3 C, rotations around the three axes

D5 is a group of order 6
[t possesses 3 classes

T~

Very important because #irrep = #classes

D5, (39) E 96 G
2 + yQ, 2 A 1 i 1
RZ, Z A2 1 1 —1

(2z,yz) (x,y) _
(33‘2 o yQ,xy) } ( | } E 2 | 0
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Crystal symmetries form a group: The tetrahedron

Cubic T, (43m)

* 1 Identity
X * 8 C; rotations around {111}
2 * 3 C, rotations around {001}
y * 6 oy retlections on the diagonal plane
* 05, improper rotations
T, is a group of order 24
. b
: [t possesses 5 classes
Ty (43m) E 8Cs 305 604
2? +y® + 27 Ay 1 1 1 !
Ay 1 1 1 1
(2% —y?, 322 —r?) E 2 —1 2 0
(Rx’Ry’Rz)} T, 3 0 ~1 -1
yz7zx7xy)
(2,y,2) Ty 3 0 ~1 1
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Introducing representations

Definition 13. A representation of an abstract group is a substitution group

(matriz group with square matrices) such that the substitution group is homo-
1 morphic (or isomorphic) to the abstract group. We assign a matriz D(A) to
each element A of the abstract group such that D(AB) = D(A)D(B).

In other words, any symmetry operation can be
represented by a square matrix, called a representation

In 2d, (x,y), we naturally get the following representation

1 V3
(10 =0 B 5 T
E_(01> A_<01> B(_ﬁ ;>
2 3 2 2
(123 (123 (123 1 V3 1 V3 13
E—<123> A—(132> B_(321> =] 2 % D=| 2 2 F=
identity

3

> 3
123 123 123
CC:<213> D:<312> F‘<231>

This representation is NOT unique!
C3 C3
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Introducing representations

We can also build a representation of dimension 1

Multiplication table (E,D,F)=¢&
EABCDF is a self-conjugated subgroup
F\lEFEABCDF (A,B,C)=A
AIAEDF BC is called a coset of this subgroup
BIBFEDC CA —
clcDFEAB | w
DIDC ABFE £1e A
FIFBCAED AAE

This group (called the factor group) is isomorphic to the
permutation group P(2). In 1d, z, the representation is

F A
D3 — (1) B, — (-1)

Flz—-z Clz-o—z
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Introducing representations

In summary, for D5, we have found 3 representations
fully invariant

E A B C D F
™~ 1)

parity —(1) (—=1) (=1)

w00 (1) (L)

E A B
1000 10 00 1o 0 0 I71 0[O
_ 0-1 0 0
fs [ 0100 ] f0-100 b0 :> 015 [0
0010 00 —10 00 5 -4 o0 T
0001 00 01 00— _1 =

This is called a reducible representation, which can be written in terms of the irreducible ones

FR:F1—|—F1/—|—F2
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Schur’s lemma - for real

Lemma. A matriz which commutes with all matrices of an irreducible repre-
sentation is a constant matrix, i.e., a constant times the unit matrix. There-
fore, if a mon-constant commuting matrix exists, the representation is re-
ducible; if none exists, the representation is irreducible.

Lemma. If the matriz representations DM (A;), DW(Ay),..., DM (Ap)
and D) (A;), D) (Ay),...,DP(AL) are two irreducible representations
of a given group of dimensionality {1 and {5, respectively, then, if there is
a matrix of {1 columns and {5 rows M such that

MDW(A,) = DPD(A)M (2.38)

for all A, then M must be the null matrix (M = O) if {1 # £s. If {1 = £,
then either M = O or the representations DY (A,) and D®) (A,) differ from
each other by an equivalence (or similarity) transformation.
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Introducing representations

Definition 16. If by one and the same equivalence transformation, all the
matrices in the representation of a group can be made to acquire the same
block form, then the representation is said to be reducible; otherwise it is
irreducible. Thus, an irreducible representation cannot be expressed in terms
of representations of lower dimensionality.
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Character of a representation

" The concrete matrix representation of a point group can be very heavy to handle
Fortunately, the matrices of the irreducible representations obey a number of rules

1. Unitarity Every representation with matrices having nonvanishing determi-
nants can be brought into unitary form by an equivalence (similarity) trans-
formation.

# elements of the group

2. Wonderful orthogonality theorem __—

r *  h
Z D(F ) [DL/,J) (R)} — [513 A 5uu’5uz/’
]\ Dimensionality of the

Matrix element Symmetry operation

irreducible representation

3. Character Since the trace (or character) of a matrix remains invariant upon equivalence
transformation, the character of each element in a class is the same..so a class can be

tagged by its character
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Character of a representation

Definition 17. The character of the matriz representation x'7(R) for a sym-
metry operation R in a representation DY) (R) is the trace (or the sum over
diagonal matrixz elements) of the matriz of the representation:

¢;
Y57 (R) = trace DUI)(R) = Z D(Fj)(R)W, (Sl
gi—1

Let’s build the character table of D,
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Character of a representation

Definition 17. The character of the matriz representation x'7(R) for a sym-
metry operation R in a representation DY) (R) is the trace (or the sum over
diagonal matrixz elements) of the matriz of the representation:

¢;
Y57 (R) = trace DUI)(R) = Z D(Fj)(R)W, (Sl
gi—1

Let’s build the character table of D,

ClaSS — Cl 3C2 2C3
IR | x(E) x(4,B,C) x(D,F)
I 1 1 1
IaY 1 —1 1
15 2 0 —1
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Character of a representation

The characters also obey a number of very useful rules

1. First orthogonality theorem for characters
S W (CK)‘ [X(Fj/ ) ((;k)} = hér, 1,

# elements in a class class  Tpjg equality sets the relation between the row of the y-table

2. Second orthogonality theorem for characters
- =
> X (Cr) (X ()| Ni = b
I

This equality sets the relation between the columns of the y-table

Theorem. A necessary and sufficient condition that two irreducible represen-
tations be equivalent is that the characters be the same.
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Salient features of a character table

C6V
Cev (6mm) E Cy 203 2Cs¢ 304 30,
1 1 1 1 1 1
1 1 1 1 —1 —1
1 —1 1 —1 —1 1
1 —1 1 —1 1 —1
2 —2 —1 1 0 0
2 2 —1 —1 0 0
//
I -
x\"(E) = ¢, 2 X (C)t =
I




Principles and Applications of Symmetry in Magnetism (PASM), Summer School
Fort Collins, Colorado

Character of a representation

Now let’s build the character table for two cases

Group D; Group Cs
Ci1 3C2 2Cs
11 1 1 1
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Decomposition of a reducible representation

Any reducible representation can be expressed in terms of irreducible ones
Not only very useful for computational purpose but also informative from a physics standpoint

Let’s consider spherical orbitals in a cubic environment (group O)
Ye,m (0, ¢) = CP"(0) ™

First determine the characters of their representation in O

Rotation of angle o around z
e—iEa O
e e sin[(¢ 4 1)a]
DO (4) — > YN >
) xle) = — g
O eiﬁa
Inversion
m=4F

X)) =) (1) = (=12 +1).

m=—
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Decomposition of a reducible representation
We deduce the character table for the various harmonics

Decomposition formula

O E 8C3 3C2=3C; 6C; 6Cy
A 1 1 1 4 12 1 X(Cr) = ZaiX(Fi)(Ck)
Az 1 1 1 el 2] &
" s o a0 a1 we XM pe] xe
15 3 0 —1 1 -1
Aq il 1 i 1 1 For instance, for 1=2
5 3 —1 1 -1 —
E+ T 5 _1 1 1 1 Yan(0, b) © 2-fold level
71T S B 7 1 —1 -1 -1 5-fold level - \ -
A+ E+TI 4T 9 0 1 il 1 3-fold level
L4270 + 1> L il =il 1 Spherical O symmetry

symmetry octahedral crystal field
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[nvariant theory and basis functions

We have talked a lot about how symmetry operations can be represented by matrices
Now, let us determine the functions that remain invariant under these operations

Associated with each irreducible representation, these “basis functions” can be used to generate the
matrices that represent the symmetry elements of a particular irreducible representation.

Vector of a representation I',

RN
PR|Fn04 ZD(F) ja|Fn]>

N\

Operator for symmetry R Matnx represention of R in I"_

The basis vectors | 7J) form an orthonormal basis

Therefore D(Fn)(R)ja — <Fnj|pR‘Fna>
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[nvariant theory and basis functions

Let’s go back to our D5 group

Pgp 2! y/ i
E=F x Y =
1 class - 3C2 2C3
Ca=F —(—: 3 —(—y — V3:
: (=t Vi) (- vis) IR |  x(E) X(A,B,C) x(D,F)
1 1
C;i'=D =(—z—VB8y) =(—y++V3zx) =z I 1 1 1
2 2 - " 1 —1 1
02(1) =A —Z Y —2 —>1% 2 0 —1
1 1
Cae) =B 5(33 —V/3y) 5(—3/ — V/3x) =
1 1
Cyi3y =C 5(:1: + v/3y) 5(—3/ ++3z)  —=z



Pr
E=E
C3=F
€ =D
Ca1) = A
Cy2) = B
Cy3) = C
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[nvariant theory and basis functions

/12
o 5

2
T

Z(;ztz - 3y2 — 2\/§1y)

1

Z(:EQ + 3y% + 2v/3zy)
32

1 2 oy

Z(l + 3y? — 2V/3zy)

1
Z(;:cz - 3y2 + 2\/§:lfy)

. P
Y

y2

1
Z(y‘{2 + 322 + 2/3xy)

1

Z(y2 + 322 — 2\/511])
yQ

(’.ljz 4B 2\/§1y)

(y* + 3z — 2v/3zy)

= ] =

Let’s go back to our D5 group

class — C1 3Co 2C3
IR  x(&) x(AB,C) x(D,F)

\F1 1 1 1

Iy 1 1 1

I 2 0 —1




Pr
E=F
Ca=F
& "=
Cay = A
Ca2) = B
Cagay = C
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[nvariant theory and basis functions

/12

<
x>
Loy . o
Z(I + 3y? — 2v/3zy)
1
— +3y +2\/§zz
4%
72

%(;172 + 3;_1/2 — 2\/5;17;1])

1
Z(;:c2 + 3y% + 2v/3zy)

Let’s go back to our D5 group

. P
Y

y?

(y2 + 322 + 2\/§1y)

A—I*—*rlklr—*

(/ + 322 —2\@11
2
(y? 4 32° + 2V/3zy)

(y* + 3z — 2v/3zy)

= ] =
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[nvariant theory and basis functions

So, in summary

D3 (32) E 2C3 3C5
T2 4y, 2* Al | 1 1 1
Rz, 2 AQ 1 1 —1

(v2,y2) } (z,y) } ela 1 o

(xQ o y27 xy)
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Projection operators

We define the projection operator acting on a basis <F ) b= k)

Explicitly ke . == Z D ) BT, pR

Therefore, for a general function f — Z Z f](,r n') ‘F ) />
Tow Hf

The projection operation yields P <F F = flgr )|F k)

This procedure allows us to expression a general function in the basis of invariants
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Projection operators

Back to our favorite D,

y
A
I
I
I
I
a

We apply the projection procedure on y,=a, y,=b, y_=c

PUn)g = bn Z X(F")(R)*IADRCL = f(F”)\Fn>
h R

Ps

pi)s _ PNy P, . 1

g(a+b+c)

P b pPU)g = phip = pUi)e = g

For the 2d representation, we rather start with a trial function
o) = a+ wb+wic, w = e2m/3

Which yields |[Iba) = a+wb+w?c, |[[RB)=a+w?b+wc.



