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Objectives

1. Learn interesting physical mechanisms of major interest in 
condensed matter and magnetism

2. Learn some key concepts about the representation theory in crystals

3. Under how to build and read the character table of a given crystal 

4. Deduce the general forms of key physical observables (Hamiltonian, 
conductivity tensor, DMI and SOT)
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Outline
Lecture 1: A primer on spin-orbitronics

Spin-orbit coupling in crystals, Dzyaloshinskii-Moriya interaction, spin-orbit torques

Lecture 2: Representation Theory applied to crystals
Group of symmetries, reducible and irreducible representations, orthogonality theorem, characters

Lecture 3: Character tables of crystal point groups
Salient features of the character table, invariant functions, decomposition theorem, product group

Lecture 4: Application to the C3v point group
Hamiltonian, conductivity tensor, DMI and SOT

Lecture 5: Your turn, with the C4v point group
Surprise me J
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Lecture I
A brief introduction to selected topics in spin-orbitronics

Manchon et al., New perspectives for Rashba spin-orbit coupling, Nature Materials 14, 871 (2015)
Bihlmayer et al. Rashba-like physics in condensed matter, Nature Reviews Physics 4, 642 (2022). 
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Spintronics: A history of revolutions
Giant magnetoresistance Spin transfer torque

Spin-to-charge conversionSpin-orbit torque Chiral magnetism

Berger & Slonczewski
Buckley price 2013

Fert & Grünberg
Nobel Laureates 2007

Jc

t

Jc

Magnetism, inversion symmetry breaking, spin-orbit coupling

Typically: Co/Cu/Co, CoFeB/MgO/CoFeB

Typically: (Pt, Ta, W etc.)/Magnet
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Einstein de Haas effect

For more information
Matsuo, Mechanical generation of spin current, Frontiers in Physics 3, 54 (2015)

Also Comment by Kovalev, Nature Nanotechnology 3, 710 – 711 (2008).

Barnett effect

Magnetic field    Mechanical torque Mechanical Torque Magnetization
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Angular momentum conservation: spin transfer torque

J. C. Slonczewski, Journal of Magnetism and Magnetic Materials 159, L1 (1996)
L. Berger, Physical Review B 54, 9353 (1996)

Slonczewski’s picture

L. Berger J. Slonczewski

“Conduction” spin“Local” magnetization

The torque exerted by
the conduction spins on
the magnetization is
given by the balance
between incoming and
outgoing spin current

Spin current transverse to M
Hayakawa JJAP 44, L587 (2005)
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Introducing spin-orbit coupling





Spin Hall effect

D’yakonov, Perel Phys. Lett. 35A, 459 (1971)
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In this work, we discuss the nature of Dzyaloshinskii-Moriya interaction (DMI) in transition metal
heterostructures. We first derive the expression of DMI in the small spatial gradient limit using
Keldysh formalism. This derivation provides us with a Green’s function formula that is well adapted
to tight-binding Hamiltonians. With this tool, we first uncover the role of orbital mixing: using both
a toy model and a realistic multi-orbital Hamiltonian representing transition metal heterostructures,
we show that symmetry breaking enables the onset of interfacial orbital momentum that is at the
origin of the DMI. We then investigate the contribution of the di↵erent layers to the DMI and reveal
that it can expand over several nonmagnetic metal layers depending on the Fermi energy, thereby
revealing the complex orbital texture of the band structure. Finally, we examine the thickness
dependence of DMI on both ferromagnetic and nonmagnetic metal thicknesses and we find that
whereas the former remains very weak, the latter can be substantial.
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Magnetic textures presenting a well-defined chirality are
of major interest due to their potential applications in
data storage1, brain-inspired architectures2–4, and reser-
voir computing5. Homochiral spin spirals6–8, quasi-one
dimensional Néel walls9–11, magnetic skyrmions12–20 in
perpendicularly magnetized systems, but also merons
in planar magnetic heterostructures21,22 are currently
the object of intense theoretical and experimental
investigations as they display high current-velocity
characteristics23,24. The key mechanism underlying
these magnetic entities is the Dzyaloshinskii-Moriya
interaction25,26 (DMI), an antisymmetric magnetic ex-
change that forces neighboring magnetic moments to
align perpendicular to each other.

In the atomistic limit, where the magnetic moments
are localized and well defined, the Dzyaloshinskii-Moriya
(DM) energy reads

EDM =
X

ij

Dij · (Si ⇥ Sj), (1)

where Si is the direction of the magnetic moment at site
i, Dij is the DM vector and the sum runs over all the

pairs i, j of the system. In this general definition, DMI
is not limited to nearest neighbors and from the sym-
metry viewpoint, Dij is determined by Moriya’s rules26.
In the micromagnetic limit, where the magnetic order is
represented by a continuous vector field m with smooth
spatial variation, DMI is rewritten

EDM =
X

↵

m · (D↵ ⇥ @↵m), (2)

where @↵ = @/@↵ is the spatial gradient along the direc-
tion e↵ and the DM vector D↵ fulfills Neumann’s sym-
metry principle. As discussed in this work, one can show
that D↵ possesses the same tensorial form as the current-
driven damping-like torque tensor27. From a theoreti-
cal standpoint, DMI is usually studied within either the
atomistic or the micromagnetic limit. Whereas the atom-
istic form, Eq. (1), is certainly more general, the micro-
magnetic form, Eq. (2), is often su�cient to describe the
behavior of magnetic soft modes such as smooth domain
walls and skyrmions. In contrast, the atomistic form
is well adapted to study magnetic texture with strong,
short-range canting like in weak ferromagnets and non-
collinear antiferromagnets for instance.
The physical origin of this interaction at transition

metal interfaces has been the object of numerous numer-
ical investigations using density functional theory. The
most straightforward approach consists in computing the
energy of a spin cycloid or spiral in real space and deter-
mining the energy di↵erence between states of opposite
chirality. In density functional theory, such a spin spiral
can be built by constraining the direction of the mag-
netic moments by applying a penalty energy on each of
them28.Upon varying the length of the spin spiral (i.e.,
varying the size of the unit cell), the various DM vectors
for nearest neighbors, next-nearest neighbors, etc. can
be extracted using Eq. (1). This approach has been used
to compute the DM vector in ferroelectric magnets such
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Magnetic textures presenting a well-defined chirality are
of major interest due to their potential applications in
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change that forces neighboring magnetic moments to
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where Si is the direction of the magnetic moment at site
i, Dij is the DM vector and the sum runs over all the
pairs i, j of the system. In this general definition, DMI
is not limited to nearest neighbors and from the sym-
metry viewpoint, Dij is determined by Moriya’s rules26.
In the micromagnetic limit, where the magnetic order is
represented by a continuous vector field m with smooth
spatial variation, DMI is rewritten
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where @↵ = @/@↵ is the spatial gradient along the direc-
tion e↵ and the DM vector D↵ fulfills Neumann’s sym-
metry principle. As discussed in this work, one can show
that D↵ possesses the same tensorial form as the current-
driven damping-like torque tensor27. From a theoreti-
cal standpoint, DMI is usually studied within either the
atomistic or the micromagnetic limit. Whereas the atom-
istic form, Eq. (1), is certainly more general, the micro-
magnetic form, Eq. (2), is often su�cient to describe the
behavior of magnetic soft modes such as smooth domain
walls and skyrmions. In contrast, the atomistic form
is well adapted to study magnetic texture with strong,
short-range canting like in weak ferromagnets and non-
collinear antiferromagnets for instance.
The physical origin of this interaction at transition

metal interfaces has been the object of numerous numer-
ical investigations using density functional theory. The
most straightforward approach consists in computing the
energy of a spin cycloid or spiral in real space and deter-
mining the energy di↵erence between states of opposite
chirality. In density functional theory, such a spin spiral
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netic moments by applying a penalty energy on each of
them28.Upon varying the length of the spin spiral (i.e.,
varying the size of the unit cell), the various DM vectors
for nearest neighbors, next-nearest neighbors, etc. can
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Magnetic textures presenting a well-defined chirality are
of major interest due to their potential applications in
data storage1, brain-inspired architectures2–4, and reser-
voir computing5. Homochiral spin spirals6–8, quasi-one
dimensional Néel walls9–11, magnetic skyrmions12–20 in
perpendicularly magnetized systems, but also merons
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interaction25,26 (DMI), an antisymmetric magnetic ex-
change that forces neighboring magnetic moments to
align perpendicular to each other.
In the atomistic limit, where the magnetic moments

are localized and well defined, the Dzyaloshinskii-Moriya
(DM) energy reads

EDM =
X

ij

Dij · (Si ⇥ Sj), (1)

where Si is the direction of the magnetic moment at site
i, Dij is the DM vector and the sum runs over all the
pairs i, j of the system. In this general definition, DMI
is not limited to nearest neighbors and from the sym-
metry viewpoint, Dij is determined by Moriya’s rules26.
In the micromagnetic limit, where the magnetic order is
represented by a continuous vector field m with smooth
spatial variation, DMI is rewritten

EDM =
X

↵

m · (D↵ ⇥ @↵m), (2)

where @↵ = @/@↵ is the spatial gradient along the direc-
tion e↵ and the DM vector D↵ fulfills Neumann’s sym-
metry principle. As discussed in this work, one can show
that D↵ possesses the same tensorial form as the current-
driven damping-like torque tensor27. From a theoreti-
cal standpoint, DMI is usually studied within either the
atomistic or the micromagnetic limit. Whereas the atom-
istic form, Eq. (1), is certainly more general, the micro-
magnetic form, Eq. (2), is often su�cient to describe the
behavior of magnetic soft modes such as smooth domain
walls and skyrmions. In contrast, the atomistic form
is well adapted to study magnetic texture with strong,
short-range canting like in weak ferromagnets and non-
collinear antiferromagnets for instance.
The physical origin of this interaction at transition

metal interfaces has been the object of numerous numer-
ical investigations using density functional theory. The
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Magnetic textures presenting a well-defined chirality are
of major interest due to their potential applications in
data storage1, brain-inspired architectures2–4, and reser-
voir computing5. Homochiral spin spirals6–8, quasi-one
dimensional Néel walls9–11, magnetic skyrmions12–20 in
perpendicularly magnetized systems, but also merons
in planar magnetic heterostructures21,22 are currently
the object of intense theoretical and experimental
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these magnetic entities is the Dzyaloshinskii-Moriya
interaction25,26 (DMI), an antisymmetric magnetic ex-
change that forces neighboring magnetic moments to
align perpendicular to each other.
In the atomistic limit, where the magnetic moments

are localized and well defined, the Dzyaloshinskii-Moriya
(DM) energy reads

EDM =
X

ij

Dij · (Si ⇥ Sj), (1)

where Si is the direction of the magnetic moment at site
i, Dij is the DM vector and the sum runs over all the
pairs i, j of the system. In this general definition, DMI
is not limited to nearest neighbors and from the sym-
metry viewpoint, Dij is determined by Moriya’s rules26.
In the micromagnetic limit, where the magnetic order is
represented by a continuous vector field m with smooth
spatial variation, DMI is rewritten

EDM =
X

↵

m · (D↵ ⇥ @↵m), (2)

where @↵ = @/@↵ is the spatial gradient along the direc-
tion e↵ and the DM vector D↵ fulfills Neumann’s sym-
metry principle. As discussed in this work, one can show
that D↵ possesses the same tensorial form as the current-
driven damping-like torque tensor27. From a theoreti-
cal standpoint, DMI is usually studied within either the
atomistic or the micromagnetic limit. Whereas the atom-
istic form, Eq. (1), is certainly more general, the micro-
magnetic form, Eq. (2), is often su�cient to describe the
behavior of magnetic soft modes such as smooth domain
walls and skyrmions. In contrast, the atomistic form
is well adapted to study magnetic texture with strong,
short-range canting like in weak ferromagnets and non-
collinear antiferromagnets for instance.

In atoms, 
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In crystals, the spin-orbit coupling induces a momentum-dependent effective field

Spin-orbit torque for field-free switching in C3v crystals
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Spin-orbit torques in noncentrosymmetric polycrystalline magnetic heterostructures are usually
described in terms of field-like and damping-like torques. However, materials with a lower symmetry
point group can exhibit torques whose behavior substantially deviates from the conventional ones.
In particular, based on symmetry arguments it was recently proposed that systems belonging to the
C3v point group display spin-orbit torques that can promote field-free switching [Liu et al. Nature
Nanotechnology 16, 277 (2021)]. In the present work, we analyze the general form of the torques
expected in C3v crystals using the Invariant Theory. We uncover several new components that arise
from the coexistence of the three-fold rotation and mirror symmetries. Using both tight binding
model and first principles simulations, we show that these unconventional torque components arise
from the onset of trigonal warping of the Fermi surface and can be as large as the damping-like
torque. In other words, the Fermi surface warping is a key indicator to the onset of field-free
switching in low symmetry crystals.

I. INTRODUCTION

hn,k|⇠so�̂ · L̂|n,ki = �gµB�̂ ·Bk

Electrical manipulation of the magnetization in sin-
gle magnetic thin films using spin-orbit torques has be-
come routinely available in the past decade [1]. In per-
pendicularly magnetized systems, the most suitable con-
figuration for memory applications, achieving reversible
current-driven switching necessitates the combination of
spin-orbit torque with an external magnetic field [2, 3].
As a matter of fact, whereas the spin-orbit torque tends
to bring the magnetization in the plane, applying an ad-
ditional external field along the current direction provides
the necessary force that completes the reversal process in
a deterministic manner. The need for this external field
is considered as a hurdle for memory applications and
several strategies have been proposed to circumvent this
di�culty. Field-free current-driven switching has been
realized using exchange bias from a neighboring antiferro-
magnet [4, 5], exchange coupling [6, 7] or anomalous Hall
torque from a proximate ferromagnet [8, 9]. The latter
takes advantage of an interfacial spin rotation of the in-
coming spin current [10], sometimes called spin swapping
[11, 12] (see also Refs. 13 and 14). In addition, struc-
tural engineering has been successfully exploited to de-
sign lateral [15–19] and geometrical [20] symmetry break-
ing, tilted anisotropy [21–23] and longitudinal (composi-
tional or structural) gradient [24, 25].

Whereas most of these works considered multilayers
made out of polycrystalline materials, recent experiments
demonstrated that low symmetry crystals are endowed
with unconventional spin-orbit torques that can play the
role of an external field, thereby completing the current-
driven switching process. The impact of the crystalline
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symmetries on the spin-orbit torque is well-known since
its initial observation in the non-centrosymmetric mag-
netic semiconductors (Ga,Mn)As [26, 27] and in the
Heusler alloy MnNiSb [28], where the bulk inversion
symmetry breaking promotes a so-called Dresselhaus-like
spin-orbit torque. In fact, further lowering of the crys-
talline symmetries can lead to unusual torques that turn
out to be instrumental to achieve field-free switching. For
instance, WTe2 has been shown to display a ”perpen-
dicular damping-like torque” [29, 30] that enables field-
free switching, an e↵ect confirmed in several experiments
[31–33]. This torque, also present in MoTe2 [34] and
NbSe2 [35], is associated with a crystalline mirror symme-
try breaking perpendicular to the interface plane. When
a current is injected along this mirror, it may generate
a nonequilibrium spin density contained in this mirror
plane and normal to the interface. Antiferromagnets
are also currently attracting attention from this stand-
point. Indeed, the combination of crystalline and mag-
netic symmetries tend to produce spin currents with a po-
larization di↵erent from what is dictated by the conven-
tional spin Hall e↵ect [36, 37], an e↵ect sometimes called
”magnetic” spin Hall e↵ect [38, 39]. These spin cur-
rents can in turn exert ”unconventional” torques on an
adjacent ferromagnet, as observed in collinear (Mn2Au
[40], RuO2[41, 42]), and non-collinear antiferromagnets
(Mn3GaN [43], Mn3Pt [44] and Mn3Sn [45]).

Recently, Liu et al. [46] studied the current-driven
magnetization reversal in a crystalline CuPt/CoPt bi-
layer in the L11 phase grown along the (111) direction.
They reported that field-free switching could be achieved
when the current was applied along low-symmetry crys-
tallographic directions. Intriguingly, the polarity of the
magnetization reversal loop displayed a periodic pattern
depending on the crystallographic direction along which
the current was applied. This unusual behavior was inter-
preted as arising from an unconventional torque, tagged
”3m” torque, which appears in crystals with C3v point
group [47]. Nonetheless, no microscopic explanation was
proposed to explain the emergence of the ”3m” torque
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In this work, we discuss the nature of Dzyaloshinskii-Moriya interaction (DMI) in transition metal
heterostructures. We first derive the expression of DMI in the small spatial gradient limit using
Keldysh formalism. This derivation provides us with a Green’s function formula that is well adapted
to tight-binding Hamiltonians. With this tool, we first uncover the role of orbital mixing: using both
a toy model and a realistic multi-orbital Hamiltonian representing transition metal heterostructures,
we show that symmetry breaking enables the onset of interfacial orbital momentum that is at the
origin of the DMI. We then investigate the contribution of the di↵erent layers to the DMI and reveal
that it can expand over several nonmagnetic metal layers depending on the Fermi energy, thereby
revealing the complex orbital texture of the band structure. Finally, we examine the thickness
dependence of DMI on both ferromagnetic and nonmagnetic metal thicknesses and we find that
whereas the former remains very weak, the latter can be substantial.

I. INTRODUCTION
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Magnetic textures presenting a well-defined chirality are
of major interest due to their potential applications in
data storage1, brain-inspired architectures2–4, and reser-
voir computing5. Homochiral spin spirals6–8, quasi-one
dimensional Néel walls9–11, magnetic skyrmions12–20 in
perpendicularly magnetized systems, but also merons
in planar magnetic heterostructures21,22 are currently
the object of intense theoretical and experimental
investigations as they display high current-velocity
characteristics23,24. The key mechanism underlying
these magnetic entities is the Dzyaloshinskii-Moriya

interaction25,26 (DMI), an antisymmetric magnetic ex-
change that forces neighboring magnetic moments to
align perpendicular to each other.
In the atomistic limit, where the magnetic moments

are localized and well defined, the Dzyaloshinskii-Moriya
(DM) energy reads

EDM =
X

ij

Dij · (Si ⇥ Sj), (1)

where Si is the direction of the magnetic moment at site
i, Dij is the DM vector and the sum runs over all the
pairs i, j of the system. In this general definition, DMI
is not limited to nearest neighbors and from the sym-
metry viewpoint, Dij is determined by Moriya’s rules26.
In the micromagnetic limit, where the magnetic order is
represented by a continuous vector field m with smooth
spatial variation, DMI is rewritten

EDM =
X

↵

m · (D↵ ⇥ @↵m), (2)

where @↵ = @/@↵ is the spatial gradient along the direc-
tion e↵ and the DM vector D↵ fulfills Neumann’s sym-
metry principle. As discussed in this work, one can show
that D↵ possesses the same tensorial form as the current-
driven damping-like torque tensor27. From a theoreti-
cal standpoint, DMI is usually studied within either the
atomistic or the micromagnetic limit. Whereas the atom-
istic form, Eq. (1), is certainly more general, the micro-
magnetic form, Eq. (2), is often su�cient to describe the
behavior of magnetic soft modes such as smooth domain
walls and skyrmions. In contrast, the atomistic form
is well adapted to study magnetic texture with strong,
short-range canting like in weak ferromagnets and non-
collinear antiferromagnets for instance.
The physical origin of this interaction at transition

metal interfaces has been the object of numerous numer-
ical investigations using density functional theory. The

Js
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I. INTRODUCTION

Spin-orbitronics refers to the study of spin transport
and magnetism in materials possessing sizable spin-orbit
coupling. It encompasses key physical mechanisms such
as anomalous spin and charge Hall transport, spin-orbit
torque, and Dzyaloshinskii-Moriya interaction in bulk
materials and heterostructures. An important range of
studies focus on the nature of these e↵ects at the inter-
face between magnetic materials and heavy metals. An
important question that is currently attracting increas-
ing attention is the nature of these e↵ects in low symme-
try materials. Indeed, although the microscopic physics
underlying AHE, SOT and DMI is still a matter of in-
vestigation, in polycrystalline materials where inversion
symmetry is broken at the interface, their general form
to the lowest order in magnetization is rather well cor-
roborated by experiments. Namely

j = �0E+ �Hm⇥E, (1)

⌧ = ⌧km⇥ [(z⇥E)⇥m], (2)

⌧ = ⌧?m⇥ (z⇥E) + ⌧km⇥ [(z⇥E)⇥m], (3)

EDM = Dm · [z⇥r)⇥m]. (4)

The first term is the anomalous Hall e↵ect, the second
term is the spin-orbit torque with two components re-
ferred to as the field-like and the damping-like torques,
and the last term is the Dzyaloshinskii-Moriya interac-
tion written in the long-range micromagnetic, continuous
field approximation. Higher order angular dependences
exist and, from a microscopic standpoint, are a signature
of strong interfacial spin-orbit coupling.

- It is well known that in bulk GaMnAs and MnNiSb,
the symmetry is not Rashba but rather Dresselhaus. In
addition, lowering symmetries modify the form of SOT
(WTe2, L11, FGT, other hexagonal 2D materials), as
well as that of DMI (FGT+arxiv and prbs). These new
forms of torques and DMI are expected to substantially
modify SOT switching, dynamics as well as magnonic
transport.

- SOT and DMI are in fact companion e↵ects at these
interfaces. A crucial point is that SOT switching requires
an in-plane field, so that several strategies have been es-

tablished to build intrinsic fields in order to achieve field-
free switching.
In this work, we investigate the transport properties in

a 2D gas with hexagonal symmetries in order to under-
stand the onset of deviations from the conventional sym-
metry. We choose to focus on two representative points
groups, C3v and C3h, which correspond to Janus mono-
layers, and FGT, respectively.

II. SYMMETRY ANALYSIS

- Figure of the 2 setups - Character tables C3v - de-
duced conductivity tensor - deduced torque - deduced
DMI

III. MICROSCOPIC ORIGIN OF

UNCONVENTIONAL SYMMETRIES

- model Hamiltonian

H0 = �2t(cosk · a+ cosk · b+ cosk · c), (5)

HR = 2tE(a sink · a+ b sink · b+ c sink · c)(� · z),(6)
HR3 = 2tR3(sink · a� sink · b+ sink · c)�z. (7)

H0 is the diagonal nearest-neighbor Hamiltonian with-
out spin-orbit coupling. HR is the Rashba Hamiltonian
coming from inversion symmetry breaking normal to the
(a, b) plane and HR3 is the cubic correction that is as-
sociated with mirror symmetry normal to y axis.

Figure of Fermi surface with spin-momentum locking
band structure with / without r3

- low energy with / without r3 —— - high energy with
/ without r3

kl (8)

IV. CONCLUSION
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its associated spin texture is given in Fig. 46(b). Rashba spin-orbit coupling2585

”locks” the spin momentum to the linear momentum such that for a particular2586

direction of propagation k, the spin angular momentum is oriented along z⇥k.2587

As a consequence, counter propagating states carry an opposite spin.2588
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Figure 46: (Color online) (a) Schematics of the energy dispersion transport in a non-magnetic
Rashba 2DEG. The red and blue curves denote di↵erent spin chiralities. (b) Two-dimensional
Fermi surface of the non-magnetic Rashba gas. (c) Displacement of the Fermi surface under
the action of an electric field.

Therefore, as proposed by Ivchenko et al. [534], if one creates a non-2589

equilibrium spin polarization of the electron gas, it generates an imbalance2590

between counter propagating states which results in a non-equilibrium charge2591

current. This e↵ect, called spin galvanic e↵ect, has been obtained using a cir-2592

cularly polarized light [536] or by injecting a non-equilibrium spin density using2593

spin pumping [? ]. In this section, we are interested to the reciprocal e↵ect,2594

i.e. the dynamics of itinerant electron spins submitted to Rashba spin-orbit2595

coupling. The heart of Rashba spin-orbit coupling can be seen by inspecting2596

the expectation value of the linear moment and spin density2597

@thp̂i =
1

i~ h[p̂, Ĥ]i =
~k
m

+ ↵Rz ⇥ h�̂i, (76)

@th�̂i =
1

i~ h[�̂, Ĥ]i = ↵Rh�̂ ⇥ (z ⇥ p̂)i, (77)

The first relation indicates that the traveling electron acquires an anomalous2598

velocity that depends on the spin density, while the second relation indicates2599

that the spin density itself experiences an e↵ective magnetic field proportional2600

to the injected current (this is the so-called Rashba field B̂R).2601

Rashba devices. The first attempt to implement such an e↵ect in a device was2602

proposed by Datta and Das [543]. The authors introduced a device composed2603

of two ferromagnets separated by an asymmetrically grown 2DEG in which2604

Rashba spin-orbit coupling is present. This system, known as the Datta-Das2605

transistor, is illustrated in Fig. 47(a). When applying a bias across the device,2606

the flowing spin-polarized electrons experience an e↵ective Rashba field [oriented2607

along z⇥j = x in Fig. 47(a)] that induces a precession. Controlling the strength2608

of the Rashba parameter using a gate voltage modulates the overall resistance2609

96

Ivchenko, Pikus, P. Zh. Eksp. Teor. Fiz 27, 604 (1978)
Edelstein, Solid State Com. 73, 233 (1990)

Manchon & Zhang, PRB 78, 212405 (2008)

Spin-orbitronics in C3v crystals

Diego Garcia, Armando Pezo, and Aurélien Manchon⇤
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Spin-orbitronics refers to the study of spin transport
and magnetism in materials possessing sizable spin-orbit
coupling. It encompasses key physical mechanisms such
as anomalous spin and charge Hall transport, spin-orbit
torque, and Dzyaloshinskii-Moriya interaction in bulk
materials and heterostructures. An important range of
studies focus on the nature of these e↵ects at the inter-
face between magnetic materials and heavy metals. An
important question that is currently attracting increas-
ing attention is the nature of these e↵ects in low symme-
try materials. Indeed, although the microscopic physics
underlying AHE, SOT and DMI is still a matter of in-
vestigation, in polycrystalline materials where inversion
symmetry is broken at the interface, their general form
to the lowest order in magnetization is rather well cor-
roborated by experiments. Namely
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The first term is the anomalous Hall e↵ect, the second
term is the spin-orbit torque with two components re-
ferred to as the field-like and the damping-like torques,
and the last term is the Dzyaloshinskii-Moriya interac-
tion written in the long-range micromagnetic, continuous
field approximation. Higher order angular dependences
exist and, from a microscopic standpoint, are a signature
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tablished to build intrinsic fields in order to achieve field-
free switching.
In this work, we investigate the transport properties in
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stand the onset of deviations from the conventional sym-
metry. We choose to focus on two representative points
groups, C3v and C3h, which correspond to Janus mono-
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its associated spin texture is given in Fig. 46(b). Rashba spin-orbit coupling2585
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As a consequence, counter propagating states carry an opposite spin.2588
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Figure 46: (Color online) (a) Schematics of the energy dispersion transport in a non-magnetic
Rashba 2DEG. The red and blue curves denote di↵erent spin chiralities. (b) Two-dimensional
Fermi surface of the non-magnetic Rashba gas. (c) Displacement of the Fermi surface under
the action of an electric field.
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equilibrium spin polarization of the electron gas, it generates an imbalance2590

between counter propagating states which results in a non-equilibrium charge2591

current. This e↵ect, called spin galvanic e↵ect, has been obtained using a cir-2592

cularly polarized light [536] or by injecting a non-equilibrium spin density using2593

spin pumping [? ]. In this section, we are interested to the reciprocal e↵ect,2594

i.e. the dynamics of itinerant electron spins submitted to Rashba spin-orbit2595

coupling. The heart of Rashba spin-orbit coupling can be seen by inspecting2596

the expectation value of the linear moment and spin density2597

@thp̂i =
1

i~ h[p̂, Ĥ]i =
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the flowing spin-polarized electrons experience an e↵ective Rashba field [oriented2607

along z⇥j = x in Fig. 47(a)] that induces a precession. Controlling the strength2608

of the Rashba parameter using a gate voltage modulates the overall resistance2609

96


S∝ y⇒


T = Δ m×


S∝ y × m

Ivchenko & Pikus, Pis'ma Zh. Eksp. Teor. Fiz 27, 604 (1978)
Edelstein, Solid State Com. 73, 233 (1990)
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y

x

z

mSy ~ τ αR

Inverse spin galvanic effect
Extrinsic

Sx ~
τ sf
τΔ

Sy

Magnetoelectric effect
Intrinsic (!) αRkF >> Δ, τ sf =

1
αR
2kF

2τ
⇒ Sx ~

Δ
αR

Δ >>αRkF, τ sf = τϕ =
τΔ
2

τ
⇒ Sx ~

αR

Δ

Li et al., PRB 91, 134402 (2015) 22

The magnetoelectric effect made simple
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Spin Hall effect

Spin Swapping

k

k’Bso~kxk’ Bso ~ kxk’

k

Bso ~ kxk’

Lifshits & Dyakonov, PRL 103, 186601 (2009)D’yakonov & Perel, JETP Lett. 13, 467 (1971)

Spin Hall and spin swapping effects

mm

je je
Js

~ z x je

Js

~ m x (z x je)

TSHE ~ m x [(z x je) x m] TSW ~ m x (z x je)

Spin Hall torque Spin swapping torque
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Spin swapping dominates
Field-like Torque

Spin Hall dominates
Damping-like Torque

Spin-orbit coupling a

D
is

or
de

r 
st

re
ng

th
 G

(e
V

)

The Ratio Dampinglike/Fieldlike is controlled by disorder

H.B.M. Saidaoui, and A. Manchon, PRL 117, 036601 (2016)
H. B. M. Saidaoui, Y. Otani, and A. Manchon, PRB 92, 024417 (2015)
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Summary of Microscopic Mechanisms

Inverse spin galvanic effect

Magnetoelectric effect

Spin Hall effect

Spin swapping effect

Interfacial

Interfacial

Bulk, lsf

Bulk, lmfp
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Angular dependence of the spin-orbit torque

Garello et al., Nature Nanotechnology 8, 587 (2013)
Ortiz Pauyac, Applied Physics Letters 102, 252403 (2013)



In 1885 Voigt stated: ‘‘the symmetry of the physical
phenomenon is at least as high as the crystallographic
symmetry,’’ which became a fundamental postulate of
crystal physics known as ‘‘Neumann’s principle’’.

Symmetry considerations

Neumann Voigt
Tensor response
(Torque, damping etc.)

Symmetry operator

Ciccarelli et al., Nature Physics 12, 855 (2016); Zelezny et al., Phys. Rev. B 95, 014403 (2017)
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Ciccarelli et al., Nature Physics 12, 855 (2016)
See also D. MacNeill et al., Nature Physics 13, 300 (2017)

Two examples

2-fold rotation symmetry Mirror symmetry

x

y

z

x

y

z

(x,y,z) -> (-x,y,-z) (x,y,z) -> (x,-y,z)
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Bulk MnNiSb: Rashba + Dresselhaus

Ciccarelli et al., Nature Physics 12, 855 (2016)

WTe2/Py: Perpendicular DL+anisotropic FL

MacNeill et al., Nature Physics 13, 300 (2017)
Peng Li et al., Nature Communications 9, 3990 (2018)
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Zelezny et al., Phys. Rev. B 95, 014403 (2017)
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Liu et al. Nature Nanotechnology 16, 277 (2021)

Collaboration with 
Jingsheng Chen @ NUS

Eve more intriguing: field-free switching with 3-fold symmetry
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Liu et al. Nature Nanotechnology 16, 277 (2021)

Collaboration with 
Jingsheng Chen @ NUS

Eve more intriguing: field-free switching with 3-fold symmetry
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The Physics of Dzyaloshinskii-Moriya interaction



Key ideas behind DMI
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Assume a general magnetic energy

Symmetric exchange Antiymmetric exchange Magnetocrystalline anisotropy
+ dipolar interaction

Micromagnetic picture

Lifshitz invariant



Key ideas behind DMI
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Various mechanims have been proposed:
Superexchange in weak ferromagnets (Moriya 1960), RKKY in dilute alloys (Fert 1990), « Rashba » 
effect in metals (Kim 2013) etc.



Moriya’s rules
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Moriya Physical Review 101, 91 (1960)
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Computing DMI: DFT+ Force Theorem
Build a spin spiral in large supercells by employing the Force Theorem (energy

penalty cost) and compute the different in energy between two opposite chiralities

Yang et al., PRL 115, 267210 (2015)

Advantages:
No assumption on the spin-orbit coupling strength
Fast and relatively easy to compute

Limitations:
Impractical to model long wavelength systems (walls and 
skyrmions)
Rather inadapted to metals (long-range interactions)
The penalty cost needed to impose the spin spiral might 
overcome the DMI energy and deteriore the accuracy
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Computing DMI: Generalized Bloch theorem
Build a spin spiral in momentum space and compute the total energy up to the first 

order in spin-orbit coupling as a function of the spiral wave length

Only valid in the absence of spin-orbit coupling
see Heide Physica B 404, 2678 (2009)

Advantages:
Full range of wave length is available
The q=0 slode provides DMI
Beyond nearest-neighbor approximation

Limitations:
Limited to first order perturbation in spin-
orbit coupling (intermediate Z)
Pretty heavy calculation

Ferriani, PRL 101, 027201 (2008)
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Computing DMI: Linear response theory
Compute the total energy to the first order in magnetization gradient

Advantages:
Green’s function formula, well suited to 
multiband systems
Valid for any spin-orbit coupling strength
Doesn’t require a dedicated DFT code
Beyond nearest-neighbor interaction

Limitations:
First order gradient only, beyond that it 
becomes very cumbersome

Freimuth et al. J. Phys. Cond. Matter 26, 104202 (2014)
Hajr Physical Review B 102, 224427 (2020)



Spin spirals and skyrmion crystal in Fe0.5Co0.5Si

Yu et al., Nature 465, 901 (2010)
Mühlbauer et al., Science 323, 915 (2009)
Heinze et al., Nature Physics 7, 713 (2011)

Metastable skyrmions in multilayers

Jiang et al., Science 349, 283 (2015)

Chen et al., Applied Physics Letters 106, 242404 (2015)

Moreau-Luchaire et al., Nature Nano. 11, 444 (2016)
Boulle et al., Nature Nano. 11, 449 (2016)

Woo et al., Nature Materials 15, 501 (2016)
Pollard Nat. Comm. 8, 14761 (2017)

Magnetic skyrmions in perpendicular magnets
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Magnetic merons and bimerons in easy-plane magnets

Yu et al., Nature 564, 95 (2018)

Meron lattices in Co8Zn9Mn3

Gobel et al., Physical Review B 99, 060407(R) (2019)

Bimerons in frustrated planar magnets

Merons

Antimerons
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The plan
Express the physical observable in terms of combinations of E, m that are 
allowed by the crystal structure

1. Choose a point group (extension to magnetic and spin group not covered)

2. Analyze the character table and determine its invariant functions

3. Determine the observable to the desired order in “small” variables

A major inconvenience of microscopic theory is that it does not provide a general form of the 
observable as a function of the system’s variable (electric field, magnetization, gradients etc.)



Outline
Lecture 1: A primer on spin-orbitronics

Spin-orbit coupling in crystals, Dzyaloshinskii-Moriya interaction, spin-orbit torques

Lecture 2: Representation Theory applied to crystals
Group of symmetries, reducible and irreducible representations, orthogonality theorem, characters

Lecture 3: Character tables of crystal point groups
Salient features of the character table, invariant functions, decomposition theorem, product group

Lecture 4: Application to the C3v point group
Hamiltonian, conductivity tensor, DMI and SOT

Lecture 5: Your turn, with the C4v point group
Surprise me J
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