Topological and Multipolar Magnets and Spintronics

Satoru Nakatsuji

Dept. of Physics, University of Tokyo Institute for Solid State Physics (ISSP), University of Tokyo Institute of Quantum Matters (IQM), Johns Hopkins University

Plan

Multipole Physics on Correlated Electron Systems

Topological States in Magnetic Systems

Physics of Antiferromagnetic Weyl Semimetals

Physics of Multipolar Kondo Lattice Systems

Lecture 4

Multipole Physics on Correlated Electron Systems

Topological States in Magnetic Systems

Physics of Magnetic Weyl Semimetals

Physics of Multipolar Kondo Lattice Systems

A pair of Weyl points

Weyl semimetals with large fictitious field in the k-space

k-space

Berry curvature $\Omega(k)$

Magnetic structure allows to control the distribution of Weyl points

\bullet Large transverse response derived from $\Omega(k)$

Weyl semimetals with large fictitious field in the k-space

k-space

Berry curvature $\Omega(k)$

Wan et al., PRB 83, 205101 (2011), Armitage et al., RMP 90, 015001 (2018).

Weyl Magnets: Functional Magnets

Enhancement of ANE using topological band structures

$$S_{\text{ANE}} = \rho \left(-S_{\text{SE}} \sigma_{yx} + \alpha_{yx} \right)$$

Hall conductivity

$$\boldsymbol{\sigma}_{\mathbf{y}\mathbf{x}}^{\mathbf{int}} = \epsilon_{xyz} \left(\frac{e^2}{\hbar}\right) \int_{\boldsymbol{k}} (2\pi)^{-3} \sum_{n} \Omega_{n,z}(\boldsymbol{k}) f(\varepsilon_{n,\boldsymbol{k}}) \, \mathrm{d}\boldsymbol{k}$$

Transverse TE conductivity

$$\boldsymbol{\alpha}_{\mathbf{y}\mathbf{x}} = \frac{k_{\mathrm{B}}}{e} \int_{\varepsilon} \epsilon_{xyz} \sum_{n,k} \{ \Omega_{n,z}(k) \delta(\varepsilon - \varepsilon_{n,k}) \} s(\varepsilon, T) \mathrm{d}\varepsilon$$

Berry curvature

$$\Omega_{n,z}(\mathbf{k}) = -2 \operatorname{Im} \sum_{m \neq n} \frac{v_{nm,x}(\mathbf{k}) v_{mn,y}(\mathbf{k})}{\{\varepsilon_m(\mathbf{k}) - \varepsilon_n(\mathbf{k})\}^2}$$

Weyl AFMs

 $Mn_3Sn: Ikhlas, Tomita et al., Nature Phys. 13, 1085 (2017).$ $Mn_3Ge: Chen et al., Nature Commun. 12, 572 (2021).$ $YbMnBi_2: Pan et al., Nature Mater. 21, 203 (2022).$

Weyl FMs

 $\begin{array}{l} Co_2MnGa: Sakai \ et \ al., \ Nature \ Phys. \ \textbf{14}, \ 1119 \ (2018).\\ Co_3Sn_2S_2: \ Guin \ et \ al., \ Adv. \ Mater. \ \textbf{31}, \ 1806622 \ (2019).\\ UCo_{0.8}Ru_{0.2}Al: \ Asaba \ et \ al., \ Sci. \ Adv. \ \textbf{7}, \ eabf1467 \ (2021). \end{array}$

Nodal-web/-plane FMs

D0₃-Fe₃X (X = AI, Ga): Sakai[†],..,TH[†] et al., Nature **581**, 53 (2020). Fe₃Sn: Chen et al., Sci. Adv. **8**, eabk1480 (2022).

~10 times larger S_{ANE} than that of conventional FMs

Enhancement of ANE using topological band structures

$$S_{\rm ANE} = \rho \left(-S_{\rm SE} \sigma_{yx} + \alpha_{yx} \right)$$

Hall conductivity

$$\sigma_{yx}^{\text{int}} = \epsilon_{xyz} \left(\frac{e^2}{\hbar}\right) \int_{k} (2\pi)^{-3} \sum_{n} \Omega_{n,z}(k) f(\varepsilon_{n,k}) \, \mathrm{d}k$$

Transverse TE conductivity

$$\boldsymbol{\alpha}_{\mathbf{y}\mathbf{x}} = \frac{k_{\mathrm{B}}}{e} \int_{\varepsilon} \epsilon_{xyz} \sum_{n,k} \{ \Omega_{n,z}(k) \delta(\varepsilon - \varepsilon_{n,k}) \} s(\varepsilon, T) \mathrm{d}\varepsilon$$

Berry curvature $\Omega_{n,z}(\mathbf{k}) = -2 \operatorname{Im} \sum_{m \neq n} \frac{v_{nm,x}(\mathbf{k}) v_{mn,y}(\mathbf{k})}{\{\varepsilon_m(\mathbf{k}) - \varepsilon_n(\mathbf{k})\}^2}$

Weyl AFMs

Mn₃Sn: *Ikhlas, Tomita et al., Nature Phys.* 13, 1085 (2017). Mn₃Ge: *Chen et al., Nature Commun.* 12, 572 (2021). YbMnBi₂: *Pan et al., Nature Mater.* 21, 203 (2022).

Weyl FMs

Co₂MnGa: Sakai et al., Nature Phys. 14, 1119 (2018). Co₃Sn₂S₂: Guin et al., Adv. Mater. 31, 1806622 (2019). UCo_{0.8}Ru_{0.2}Al: Asaba et al., Sci. Adv. 7, eabf1467 (2021).

Nodal-web/-plane FMs

D0₃-Fe₃X (X = AI, Ga): Sakai[†], et al., Nature 581, 53 (2020). Fe₃Sn: Chen et al., Sci. Adv. **8**, eabk1480 (2022).

~10-100 times larger S_{ANE} than that of conventional FMs

Topological (Weyl) AFM Mn₃Sn

Antiferromagnets exhibiting large transverse responses

10

Large transverse responses of Weyl AFM Mn₃Sn

TH et al., Nat. Photon. **12**, 73 (2018).

Ikhlas, Tomita et al., Nat. Phys. 13, 1085 (2017).

SN, Kiyohara, & Higo, Nature **527**, 212 (2015).

M independent ANE of Weyl AFM Mn₃Sn

Topological (Weyl) ferromagnet Co₂MnGa

Largest ANE @ $T \ge RT$ (6 µV/K @ RT, 8 µV/K @ 400 K)

Topological band structure of Co₂MnGa

Large Ω(k) at Weyl points & DOS due to quantum Lifshitz transition

13

Nodal-web ferromagnet $D0_3$ -Fe₃X (X = Ga, Al)

 $D0_{3}$ -Fe₃X (X = Ga, Al)

Calc. for ~1300 samples using MI

Formula	Space group	α _{max} (Α Κ ⁻¹ m ⁻¹)
Fe₃Pt	Pm3m	6.2
Fe₃Ga	Fm3m	3.0
Fe₃Al	Fm3m	2.7

[Bulk & Film (D0₃)] Sakai[†],.., TH[†] et al., Nature **581**, 53 (2020).

Minami et al., PRB **102**, 205128 (2020).

T. Koretsune

Giant ANE comparable to Co₂MnGa (S_{ANE} ~ 5.5 µV/K @ RT)
Binary systems consisting of safe & inexpensive elements

[Film (B2 ? A2?)] Nakayama et al., PRM **3**, 114412 (2019). Zhou, Sakuraba, APEX **13**, 043001 (2020).

Heat flux sensor

a wide variety of sensors [Thermal sensors: 100 billion units by 2025]

Visualizing the heat flow

- Heat dissipation/reception around an engine
- Abnormal heat generation in electronics
- Thermal conductivity (insulation)
- Health Care (deep body temperature))

ANE-type heat flux sensor

e.g., Zhou & Sakuraba, APEX 13, 043001 (2020); TH et al., Adv. Funct. Mater. 31, 2008971 (2021)...

Flexible heat flow sensor using thin-film fabrication Price : SE $$500 \rightarrow ANE $1-10$

ANE-type heat flux sensor

e.g., Zhou & Sakuraba, APEX 13, 043001 (2020); TH et al., Adv. Funct. Mater. 31, 2008971 (2021)...

Flexible heat flow sensor using thin-film fabrication Price : SE \$500 → ANE \$1-10

19

Collaboration work with Nitto Denko Corp. Nitto

Plan

Multipole Physics on Correlated Electron Systems

Topological States in Magnetic Systems

Physics of Antiferromagnetic Weyl Semimetals

Physics of Multipolar Kondo Lattice Systems

Multipolar phenomena in Ce³⁺-based systems

La-doped CeB₆ : *B*-*T* phase diagram featuring dipolar, quadrupolar, and octupolar orders

Ce₃Pd₂₀Si₆: Two electron localization transitions driven by dipolar and

Cubic Pr³⁺ systems: Ideal platform for multipolar physics

4*f* Kramers doublet (e.g., Ce³⁺, Yb³⁺)

- Odd number of f electrons
- Half-integer J
- Kramer's theory: double degeneracy protected by time-reversal symmetry

4*f* non-Kramers doublet (e.g., Pr³⁺)

- Even number of f electrons
- Integer J
- Double degeneracy is *not* protected by time-reversal symmetry but by the local symmetry

Cubic Pr³⁺ systems: Ideal platform for multipolar physics

 $Pr(TM)_2AI_{20}$

Frank-Kasper cages of 16 Al surrounding the Pr ion \rightarrow strong *c-f* hybridization

Cubic Pr³⁺ systems: Ideal platform for multipolar physics

Pr (TM)₂Al₂₀

Frank-Kasper cages of 16 Al surrounding the Pr ion \rightarrow strong *c-f* hybridization

How do multipoles modify quantum phenomena?

VS.

Single-channel Kondo model (*k* = 1) and **exact screening**

f electrons become itinerant and enter the Fermi surface in the heavy-fermion Fermi liquid (FL) ground state

$$\rho \sim AT^2 \qquad C/T \sim \frac{m^*}{m_0}\gamma_0$$

Quadrupolar Kondo effect

Two-channel Kondo model (k = 2) and **over-screening** D. L. Cox, Phys. Rev. Lett. (1987).

Residual entropy $S_0 = \frac{1}{2}R \ln 2$ leads to a **non-Fermi liquid (NFL) ground state**

$$ho \sim T^{1/2}$$
, $C/T \sim -\ln T$,
 $\chi \sim T^{1/2}$ or $\sim -\ln T$

How do multipoles modify quantum phenomena?

Multipolar RKKY vs. Multipolar Kondo effect?

Single-site multipolar Kondo effect in $Y_{1-x}Pr_xIr_2Zn_{20}$

Multipolar RKKY vs. Multipolar Kondo effect?

Unifying themes of strongly correlated matters

Unifying themes of strongly correlated matters

How do multipoles modify quantum phenomena?

Tuning a multipolar Kondo system to a QCP

Will the resultant phase diagram different from the Doniach phase diagram?

Novel quantum critical phenomena and superconductivity?

Long-range multipolar order:

PrTi₂Al₂₀: Ferroquadrupolar (FQ) order at $T_Q \sim 2K$ **PrV₂Al₂₀**: Two-stage transitions at $T_Q \sim 0.75K$ (AFQ) and $T^* \sim 0.65K$ (octupolar order?)

A. Sakai and S. Nakatsuji, JPSJ 80, 063701 (2011)

Heavy fermion superconductivity: large γ and $dB_{c2}/dT \mid_{T=T_c} m^*/m_0 \sim 20$, (Ti), 150 (V).

Long-range multipolar order:

PrTi₂Al₂₀ : Ferroquadrupolar (FQ) order at $T_Q \sim 2K$ **PrV₂Al₂₀** : Two-stage transitions at $T_Q \sim 0.75K$ (AFQ) and $T^* \sim 0.65K$ (octupolar order?)

A. Sakai and S. Nakatsuji, JPSJ 80, 063701 (2011)

Kondo resonant peak in $PrTi_2AI_{20}$ \rightarrow substantial *c*-*f* hybridization

M. Matsunami et al., PRB 84, 193101 (2011)

K. Matsubayashi et al., PRL. 109, 187004 (2012), & preprint.

The -ln*T* behavior driven by the magnetic Kondo effect increases in magnitude $\rightarrow c$ -*f* hybridization enhances under pressure

Resistivity becomes incoherent near $P_c \sim 11$ Gpa

K. Matsubayashi et al., PRL. 109, 187004 (2012), & preprint.

Pronounced enhancement of T_c **and effective mass** m^* on approaching $P_c \sim 11$ GPa;

- two SC domes extending to 16 GPa
- Robust NFL behavior covering a wide parameter range;
 FL phase does not recover under high pressures

Topological and Multipolar Magnets and Spintronics

Satoru Nakatsuji

Dept. of Physics, University of Tokyo Institute for Solid State Physics (ISSP), University of Tokyo Institute of Quantum Matters (IQM), Johns Hopkins University