# Topological and Multipolar Magnets and Spintronics

#### Satoru Nakatsuji

Dept. of Physics, University of Tokyo Institute for Solid State Physics (ISSP), University of Tokyo Institute of Quantum Matters (IQM), Johns Hopkins University

## Plan

Multipole Physics on Correlated Electron Systems

Topological States in Magnetic Systems

Physics of Antiferromagnetic Weyl Semimetals

Physics of Multipolar Kondo Lattice Systems

# Order parameters characterizing AHE



## **Theory: AHE in AFM**

4



# **Theory: AHE in AFM**



5

### Magnetic Multipoles vs. Cluster Multipoles

#### Suzuki, Arita et al., PRB 094406(2017).



CMP: A new basis for classifying antiferromagnetic structures

### Large room-temperature AHE in AFM Mn<sub>3</sub>Sn

Noncollinear AFM order at  $T_N = 430$  K



$$\rho_{\rm H} = R_0 B + R_{\rm S} \mu_0 M \sim 0.01 \ \mu\Omega \text{cm}$$

### Large room-temperature AHE in AFM Mn<sub>3</sub>Sn



S. N., N. Kiyohara, T. Higo, Nature (2015)

 $\rho_{\rm H} = R_0 B + R_{\rm S} \mu_0 M \sim 0.01 \ \mu\Omega cm$  VS.  $\rho_{\rm H} = R_0 B + R_{\rm S} \mu_0 M + \rho_{\rm H}^{\rm AF} \sim 3 \ \mu\Omega cm$ 

The large AHE arises from a momentum-space fictitious field (i.e., Berrý<sup>u</sup> cturture) initiation interfuithe net M

### **Cluster octupoles in AFM Mn<sub>3</sub>Sn**

 $B_{2g}(T_x^{\zeta})$  $E_{Ig}(T_x^{\gamma}) = E_{Ig}(T_y^{\gamma})$  $B_{lg}(T_y)$  $E_{2g}(T_{xyz})$  $A_{2g}(T_z^{\alpha})$  $E_{2g}(T_z^p)$ upper plane lower plane b

These cluster octupoles behave like a magnetic dipole under time reversal, mirror reflection, and spatial inversion operations

Octupolar polarization plays the same role as *M* in FMs.

### **Cluster octupoles in AFM Mn<sub>3</sub>Sn**



CSU PASM23 Summer School Lecture: Satoru Gatugoles with the E1g representation

### Anomalous Hall effect in Mn<sub>3</sub>Sn within the framework of CMP



The cluster multipole theory allows us to discuss anomalous Hall conductivity (AHC) in FM and AFM with a unified framework

Cluster multipoles can effectively characterize the magnetic and transport properties of AFM summer School Lecture: Satoru Nakatsuji

# AHE and spin splitting of bcc-Fe

FM states of bcc-Fe



## AHE and CMP orbital splitting of Mn<sub>3</sub>Sn



### Summary: Cluster octupole ordering in Mn<sub>3</sub>Sn

#### Noncollinear AFM order at $T_N$ = 430 K





A group of six spins forms <u>a cluster octupole</u> <u>moment</u>, which is highly tunable by a magnetic field, electrical current, and strain.

The AFM order in  $Mn_3Sn$  is <u>a ferroic order</u> of cluster octupoles, which macroscopically breaks time-reversal symmetry.

Cluster octupole polarization K~ Berry Curvature (the momentum-space fictitious magnetic field)



# Strain Control of AHE in Mn<sub>3</sub>Sn



<u>Nature Physics</u> volume 18, 1086–1093 (2022)



# **Magnetic Multipole**

Suzuki, Arita et al., PRB 094406(2017).



# **Magnetic Octupole**



Suzuki, Arita et al., PRB 094406(2017).





## **Magnetic Octupole**

Suzuki, Arita et al., PRB 094406(2017).





# **Magnetic Octupole**

Suzuki, Arita et al., PRB 094406(2017).



Magnetic Octupole



Breaking Time Reversal Symmetry CSU PASM23 Summer School Lecture: Satoru Nakatsuii

### **Piezomagnetic effect in antiferromagnets**

□For certain types of antiferromagnets, strain breaks the symmetry between magnetic sublattices, and induces net magnetization linear in the applied strain

□Piezomagnetic effect :

$$\begin{pmatrix} M_x \\ M_y \\ M_z \end{pmatrix} = \begin{pmatrix} \Lambda_{11} & \Lambda_{12} & \Lambda_{13} & \Lambda_{14} & \Lambda_{15} & \Lambda_{16} \\ \Lambda_{21} & \Lambda_{22} & \Lambda_{23} & \Lambda_{24} & \Lambda_{25} & \Lambda_{26} \\ \Lambda_{31} & \Lambda_{32} & \Lambda_{33} & \Lambda_{34} & \Lambda_{35} & \Lambda_{36} \end{pmatrix} \begin{pmatrix} \sigma_{xx} \\ \sigma_{yy} \\ \sigma_{zz} \\ \sigma_{yz} \\ \sigma_{xz} \\ \sigma_{xy} \end{pmatrix}$$

 $\Box \Lambda$  is non-zero for AFM that macroscopically break time reversal symmetry or preserve time reversal symmetry *only* in combination with rotation and reflection. 66 out of 122 magnetic point groups allow piezomagnetic effect

E. Dzyaloshinskii, JETP 33, 807 (1957) B. A. Tavger and V. M. Zaitzev, J. Exp. Theor. Phys. 3 (1956)

#### Piezomagnetic effect in collinear antiferromagnet CoF<sub>2</sub> and MnF<sub>2</sub>

Tetragonal structure, 2 distinct transition metal sites

❑ Strain along [110] direction, breaks the symmetry of the sublattice moments → ferrimagnetic moment along [001]

Moriya, T., Journal of Physics and Chemistry of Solids 11 (1959)



S. A. Disa, et al. Nature Physics 16 (2020)

In the presence of piezomagnetic effect, under a constant field, a static stress can mediate 180° AF domain reversal



Fig. 1. – Flipping ratio R as a function of the stress applied during the cooling of the MnF<sub>2</sub> crystal  $(4 \times 4 \times 2.5 \text{ mm}^3)$  through  $T_N$  in a 0.01 T magnetic field, and schematic drawing of the topographs recorded after removing the field, at 20 K, with neutrons polarized along [001].

Has been seen mostly in AF insulators

Baruchel, J., *et al. Le Journal de Physique* Satoru Naka Gelloques **49** (1988)

### Piezomagnetic effect in Weyl semimetal Mn<sub>3</sub>Sn

□The magnetic structure of 120° antichiral phase macroscopically breaks time-reversal symmetry, piezomagnetic effects are allowed

□Its magnetic point group symmetry (*m'm'm'*) dictates:

$$\begin{pmatrix} M_{x} \\ M_{y} \\ M_{z} \end{pmatrix} = \begin{pmatrix} \Lambda_{11} & \Lambda_{12} & \Lambda_{13} & 0 & 0 & \Lambda_{16} \\ \Lambda_{21} & \Lambda_{22} & \Lambda_{23} & 0 & 0 & \Lambda_{26} \\ 0 & 0 & 0 & \Lambda_{34} & \Lambda_{35} & 0 \end{pmatrix} \begin{pmatrix} \sigma_{xx} \\ \sigma_{yy} \\ \sigma_{zz} \\ \sigma_{yz} \\ \sigma_{xy} \end{pmatrix}$$

Source: Bilbao crystallographic server

□In-plane stress couples to magnetization, for example  $M_x = \Lambda_{11}\sigma_{xx} + \Lambda_{12}\sigma_{yy} + \Lambda_{16}\sigma_{xy}$ 

#### Magnetization of Mn<sub>3</sub>Sn under in-plane uniaxial compression



□We fit the data with:





Spontaneous compontent

Field-induced compontent

 $\rightarrow M_S$  is enhanced by in-plane stress

 $\rightarrow \chi$  is insensitive to stress

Ikhlas, Dasgupta, et alsu Nature Physics volume 18, pages 1086-1093 (2022)

### Stress-dependence of spontaneous magnetization $M_{\rm S}$



### Microscopic origin of piezomagnetic effect in Mn<sub>3</sub>Sn

□Exchange interaction *J* depends on the distance between magnetic ions (*exchange striction*)



#### Illustration of piezomagnetic effect in Mn<sub>3</sub>Sn

#### □strain-dependent magnetization

Unstrained

#### x-axis compression



**z**: [0001]

→**x**: [2110]





### Illustration of piezomagnetic effect in Mn<sub>3</sub>Sn



#### □In-plane tension may rotate **M** to the opposite direction to **K**

#### Illustration of piezomagnetic effect in Mn<sub>3</sub>Sn

□strain-dependent magnetization



□In-plane tension may rotate **M** to the opposite direction to **K** 

 $\rightarrow$  Leads to a sign change in the anomalous Hall effect

#### Uniaxial strain cell and sample mounting







Strain: 
$$\varepsilon = \Delta L / \Delta L = \varepsilon_0 A \left( \frac{1}{C} - \frac{1}{C_0} \right)$$

A = area of parallel plate capacitor

C = capacitance of displacement sensor (pF)

 $C_0$  = initial capacitance of displacement sensor (pF)

### Anomalous Hall effect under in-plane uniaxial strain





 $\Box$ AHE couples to in-plane uniaxial strain  $\rightarrow$  sign change of AHE under compressive strain

Nature Physics volume 18, pages 1086-1098 (2020) Nakatsuji

#### Strain dependence of normalized anomalous Hall resistivity



□ Hall resistivity can change sign while the sign of the magnetization remains the same

 $\rightarrow$  Evidence that the AHE in Mn<sub>3</sub>Sn is controlled by the octupolar order, and **not** the dipolar magnetization

<sup>CSU PASM23</sup> Sum Physics volume 18, pages 1086–1093 (2022) <sup>31</sup>