Topological and Multipolar Magnets and Spintronics

Satoru Nakatsuji

Dept. of Physics, University of Tokyo Institute for Solid State Physics (ISSP), University of Tokyo Institute of Quantum Matters (IQM), Johns Hopkins University

Trans-scale Quantum Science Institute, UTokyo

School of Science · ISSP · IPMU · Cryogenic Research Center

- Bringing together the world-class research infrastructures of the University of Tokyo, promoting educational exchanges and collaborative research with leading universities and institutions abroad.
- Advancing the conceptual framework of fundamental quantum science, creating quantum-technology innovations, and training future quantum-science experts that may significantly benefit our society.

Research topics and expertise with excellent breadth and depth Projects involving global & academia-industry collaborations

Multicultural research team with English being the second official language

Join our team: We always welcome applications from international students and postdocs with diverse backgrounds

Quantum Materials and Spintronics, Nakatsuji Lab.

Johns Hopkins Univ. Dept. Phys. & Astro.

Activities of Young Researchers

International Conferences, workshop

TSQS2022

Thin film & device fabrication : Sputter, MBE, Photo litho, EB-litho, ...

Measurement: XRD, Prober, Dilution ref., PPMS, MPMS, ...

"Meanwhile, the Cosmos is rich beyond measure: the total number of stars in the Universe is greater than all the grains of sand on all the beaches of the planet Earth"

— Carl Sagan

Under a microscopic lens, quantum mechanical properties of electrons lead to a rich universe of exotic phases.

CSU PASM23

Topological Electronic Structure

Experimentally established^{sultiment}/wetaktivelitieracting electron systems

Spin

Charge

Large Coulomb repulsion and narrow bandwidth give rise to strong electronic correlations In correlated matters, the complex interplay between multiple degrees of freedom brings about a rich universe of quantum phases.

Phonon

CSU PASM23 Summer School Lecture Satoru Na

Traditional platforms: Spin-driven phenomena

New platforms: blending topology with multipole physics

Plan

Multipole Physics on Correlated Electron Systems

Topological States in Magnetic Systems

Physics of Antiferromagnetic Weyl Semimetals

Physics of Multipolar Kondo Lattice Systems

Multipolar Expansion in electromagnetism

Maxwell equations:

 $\nabla \cdot \mathbf{E} = 4\pi \rho_e(\mathbf{r})$ (Gauss' law for electricity) $\nabla^2 \phi = -4\pi \rho_e(\mathbf{r})$ Scalar potential field Electric charge density $\nabla \cdot \mathbf{B} = 0$ (Gauss' law for magnetism) $\longrightarrow \nabla \cdot \mathbf{H} = 4\pi \rho_m(\mathbf{r})$ $\nabla \times \mathbf{E} = -\frac{1}{c} \frac{\partial \boldsymbol{B}}{\partial t}$ (Faraday's law) Magnetic charge density $\rho_m(\mathbf{r}) = -\nabla \cdot \mathbf{M}(\mathbf{r})$ $\nabla \times \mathbf{B} = \frac{1}{c} \left(4\pi \mathbf{j} + \frac{\partial \mathbf{E}}{\partial t} \right) \quad \text{(Ampere's law)} \quad \stackrel{\mathbf{B} = \nabla \times \mathbf{A}}{\longrightarrow} \quad \nabla^2 \mathbf{A} = -\frac{4\pi}{c} \mathbf{j}(\mathbf{r})$ Vector potential field CSU PASM23 Summer School Lecture: Satoru Nakatsuji

Multipolar Expansion in electromagnetism

 $\phi(\mathbf{r})$

 $r \gg x$

Source charge

For regions outside an arbitrary source distribution, the scalar potential $\phi(\mathbf{r})$ and the vector potential $\mathbf{A}(\mathbf{r})$ admits a multipolar expansion:

 $\phi(\mathbf{r}) = \sum_{l=0}^{\infty} \sum_{m=-l}^{l} \frac{1}{r^{l+1}} Z_{lm}(\hat{\mathbf{r}}) Q_{lm} \rightarrow \text{Electric multipolar moments}$ Normalized spherical harmonics: $Z_{lm}(\hat{\mathbf{r}}) \equiv \sqrt{\frac{4\pi}{2l+1}} Y_{lm}(\hat{\mathbf{r}})$ $\mathbf{A}(\mathbf{r}) = \sum_{l=0}^{\infty} \sum_{m=-l}^{l} \frac{1}{r^{l+1}} \frac{\mathbf{L}Z_{lm}(\hat{\mathbf{r}})}{il} M_{lm} \rightarrow \text{Magnetic multipolar moments}$

 $Q_{lm} \equiv \int d\mathbf{r} r^l Z_{lm}(\hat{\mathbf{r}})^* \rho_e(\mathbf{r}) \rightarrow \text{Source charge density distribution}$

 $M_{lm} \equiv \int d\mathbf{r} r^l Z_{lm}(\hat{\mathbf{r}})^* \rho_m(\mathbf{r}) \rightarrow \text{Source magnetization density distribution}$

Multipolar Expansion in electromagnetism

Rank	Multipole	Expression for	Illustration
l = 0	Electric monopole	$\phi_{l=0}(\mathbf{r}) = \frac{q}{4\pi\varepsilon_0 r}$	
l = 1	Electric Dipole	$\phi_{l=1}(\mathbf{r}) = \frac{\mathbf{r} \cdot \mathbf{p}}{4\pi\varepsilon_0 r^3}$	
<i>l</i> = 2	Electric quadrupole	$\phi_{l=2}(\mathbf{r}) == \frac{3Q}{8\pi\varepsilon_0 r^3}$	

Atomic multipoles in a material

Multipoles characterize the localized charge and magnetization density distribution at magnetization site

Symmetry properties of atomic multipoles

Under inversion (spatial parity) transformation:

$$Q_{lm} \rightarrow (-1)^l Q_{lm}$$
$$M_{lm} \rightarrow (-1)^{l+1} M_{lm}$$

The electric charge density $\rho_e(\hat{r})$ is timereversal-even and parity-even, such that

 $ho_e(\hat{r}) =
ho_e(-\hat{r})$ in the presence of inversion symmetry

Electric multipoles are time-reversal even, and only even-rank electric multipoles are non-zero with inversion symmetry. The magnetization density $\rho_m(\hat{r})$ is timereversal-odd and parity-odd, such that

 $ho_m(\hat{r}) = ho_m(-\hat{r})$ in the presence of inversion symmetry

$$\rho_m(\hat{\boldsymbol{r}}) = \sum_{l=0}^{\infty} \sum_{l=-m}^{m} (2l+1) \frac{M_{lm}}{\mu_B \langle r^{l-1} \rangle} Z_{lm}(\hat{\boldsymbol{r}})$$

Magnetic multipoles are time reversal odd, and only **odd-rank** magnetic multipoles are non-zero with inversion symmetry.

Symmetry properties of atomic multipoles?

Under inversion (spatial parity) transformation:

 $Q_{lm} \to (-1)^l Q_{lm}$ $M_{lm} \to (-1)^{l+1} M_{lm}$

Image: Perform of the sector of the secto

multipoles are non-zero

multipoles are non-zero

Symmetry properties of atomic multipoles?

Platforms to explore atomic multipoles?

Large electron-electron interaction (Coulomb repulsion $U \sim 1 \text{eV}$) **Large spin-orbit coupling** ($\lambda_{SO} \sim Z^4$) **Highly localized** electronice wavefunction at the atomic sites

Effects of crystalline electric field (CEF)

Crystalline Electric Field (CEF):

Modifies the energy levels of the electronic orbitals according to the **local symmetry** of the ion's environment in a crystal.

Effects of crystalline electric field (CEF)

Crystalline Electric Field (CEF):

Modifies the energy levels of the electronic orbitals according to the **local symmetry** of the ion's environment in a crystal.

Example: *d*-orbital splitting due to CEF

Example: Ce³⁺ in a cubic CEF

<u>Ce³⁺ (4 f^1)</u>: L = 3, S = 1/2, J = 5/2

The CEF Hamiltonian in the basis set for J = 5/2:

Example: Ce³⁺ in a cubic CEF

Charge and magnetization density distribution for $|\Gamma_7^{\pm}\rangle$, $|\Gamma_8^{\pm}, a\rangle$, $|\Gamma_8^{\pm}, b\rangle$

Representative multipoles of Γ_8 quartet

H. Kusunose, J. Phys. Soc. 490. PA3 M234 Jummer School Lecture: Satoru Nakatsuji

P. Thalmeier *et al.*, arXiv:1907.10967

Multipolar phenomena in Ce³⁺-based systems

La-doped CeB₆ : *B*-*T* phase diagram featuring dipolar, quadrupolar, and octupolar orders

Ce₃Pd₂₀Si₆: Two electron localization transitions driven by dipolar and quadrupolar d.o.f

Multipolar phenomena in Ce³⁺-based systems

La-doped CeB₆ : *B*-*T* phase diagram featuring dipolar, quadrupolar, and octupolar orders

Ce₃Pd₂₀Si₆: Two electron localization transitions driven by dipolar and

Cubic Pr³⁺ systems: Ideal platform for multipolar physics

4*f* Kramers doublet (e.g., Ce³⁺, Yb³⁺)

- Odd number of f electrons
- Half-integer J
- Kramer's theory: double degeneracy protected by time-reversal symmetry

4*f* non-Kramers doublet (e.g., Pr³⁺)

- Even number of f electrons
- Integer J
- Double degeneracy is *not* protected by time-reversal symmetry but by the local symmetry

Cubic Pr³⁺ systems: Ideal platform for multipolar physics

 $Pr(TM)_2AI_{20}$

Frank-Kasper cages of 16 Al surrounding the Pr ion \rightarrow strong *c-f* hybridization

Active multipoles in cubic Pr³⁺ systems

Basis states of the Γ_3 non-Kramers doublet:

 $|\Gamma_3\rangle = \begin{pmatrix} |\Gamma_3^+\rangle \\ |\Gamma_3^-\rangle \end{pmatrix}$

 $\langle \Gamma_3^{\pm} | J_{\alpha} | \Gamma_3^{\pm} \rangle = 0$, where $\alpha = x, y, z$ No dipole moment!

Finite matrix elements for

Quadrupolar moments (time-reversal even)

Octupolar moment (time-reversal odd)

$$O_{22} \equiv \frac{\sqrt{3}}{2} \left(J_x^2 - J_y^2 \right) \qquad O_{20} \equiv \frac{1}{2} \left(3J_z^2 - J_y^2 \right)$$
$$T_{xyz} \equiv \frac{\sqrt{15}}{6} \overline{J_x J_y J_z}$$

 $-J^{2}$)

Pseudospin-1/2 basis

$$|\uparrow\rangle = \frac{1}{\sqrt{2}} (|\Gamma_3^+\rangle + i|\Gamma_3^-\rangle)$$
$$|\downarrow\rangle = \frac{1}{\sqrt{2}} (i|\Gamma_3^+\rangle + |\Gamma_3^-\rangle)$$

$$S^{x} = -\frac{1}{4}O_{22}$$
 $S^{y} = -\frac{1}{4}O_{20}$ $S^{z} = \frac{1}{3\sqrt{5}}T_{xyz}$

Cubic Pr³⁺ systems: Ideal platform for multipolar physics

Pr (TM)₂Al₂₀

Frank-Kasper cages of 16 Al surrounding the Pr ion \rightarrow strong *c-f* hybridization

Probing atomic multipoles

- Long-range ordered phases involving high-rank multipoles are often referred to as "hidden orders" because their nature is highly challenging to detect using conventional magnetic probes, such as neutron scattering
- Lattice strains w with the order pa magnetic field on

CSU PASM23 Summer School Lecture: Satoru Nakatsuji T. Yanagisawa et al., PRL123, 067201, (2019)

Probing atomic multipoles

- Long-range ordered phases involving high-rank multipoles are often referred to as "hidden orders" because their nature is highly challenging to detect using conventional magnetic probes, such as neutron scattering
- Lattice strains with appropriate symmetries can directly couple with the order parameter of multipolar order, like the effect of a magnetic field on dipolar moments.

Measurement of elastic modulus (e.g., ultrasound, magnetostriction)

Ordering of high-rank atomic multipoles

Probing multipole order with ultrasound

What can we learn from the ultrasound?

 \rightarrow Elastic constant $C = v^2 \rho$

Sound velocity Density

	Electric Quadrupole	Magnetic dipole
Field	Lattice strain ϵ_{Γ}	Magnetic field <i>H</i>
Order parameter	$\langle O_{\Gamma} \rangle = \frac{\partial F}{\partial \epsilon_{\Gamma}}$	$\langle M \rangle = -\frac{\partial F}{\partial H}$
	$\chi_{\Gamma} = -\frac{1}{g_{\Gamma}^2} \frac{\partial^2 F}{\partial \epsilon_{\Gamma}^2} = -\frac{1}{g_{\Gamma}^2} C_{\Gamma}$	$\chi = -\frac{\partial^2 F}{\partial H^2}$

Elastic constant directly probes CSU PASM23 Summthen Quadrus Care Sales Summthen Quadrus Care Sales Summthen Constant directly probes

Probing multipole order with ultrasound

What can we learn from the ultrasound?

 \rightarrow Elastic constant $C = v^2 \rho$

Sound velocity Density

	Electric Quadrupole	Magnetic dipole
Field	Lattice strain ϵ_{Γ}	Magnetic field <i>H</i>
Order parameter	$\langle O_{\Gamma} \rangle = \frac{\partial F}{\partial \epsilon_{\Gamma}}$	$\langle M \rangle = -\frac{\partial F}{\partial H}$
	$\chi_{\Gamma} = -\frac{1}{g_{\Gamma}^2} \frac{\partial^2 F}{\partial \epsilon_{\Gamma}^2} = -\frac{1}{g_{\Gamma}^2} C_{\Gamma}$	$\chi = -\frac{\partial^2 F}{\partial H^2}$

Elastic constant directly probes CSU PASM23 Summthen Quadrus Collar kasujsceptibility!

Example: spin-orbital liquid in Pr³⁺-based pyrochlore

Spin–orbital interlocking in the non-Kramers doublet

The non-Kramers doublet in Pr₂Zr₂O ₇ hosts two **timereversal even quadrupolar moments** (XY pseudospin components) and (Z pseudospin component) **one timereversal odd dipolar moment**

Example: spin-orbital liquid in Pr³⁺-based pyrochlore

N. Tang et al., Nat. Phys (2022)

/irtual monopole states

Strong lattice softening accompanying the liquid-gas metamagnetic transition

The quadrupolar moments couple linearly to strain, making lattice probes particularly effective for detecting the low-lying spinorbital dynamics

The non-Kramers doublet in Pr₂Zr₂O ₇ hosts two **timereversal even quadrupolar moments** (XY pseudospin components) and (Z pseudospin component) **one timereversal odd dipolar moment**

B || ∆L || [111]

400 mK

B (T)

How do multipoles modify quantum phenomena?

VS.

Single-channel Kondo model (*k* = 1) and **exact screening**

f electrons become itinerant and enter the Fermi surface in the heavy-fermion Fermi liquid (FL) ground state

$$\rho \sim AT^2 \qquad C/T \sim \frac{m^*}{m_0}\gamma_0$$

Quadrupolar Kondo effect

Two-channel Kondo model (k = 2) and **over-screening** D. L. Cox, Phys. Rev. Lett. (1987).

Residual entropy $S_0 = \frac{1}{2}R \ln 2$ leads to a **non-Fermi liquid (NFL) ground state**

$$ho \sim T^{1/2}$$
, $C/T \sim -\ln T$, $\chi \sim T^{1/2}$ or $\sim -\ln T$

How do multipoles modify quantum phenomena?

Multipolar RKKY vs. Multipolar Kondo effect?

30 K

10

20

(a)

(b)

Rln2

(3/4)Rln2

(1/2)Rln2

3

T. Ominaru *et al.,* PRL**94**, 197201 (2005) CSU PASM23 Summer School Lecture: Satoru Nakatsuji Y. Yamane et al., PRL121, 077206 (2018)

Multipolar RKKY vs. Multipolar Kondo effect?

